Direct estimation of shear‐wave interval velocities from seismic data

Geophysics ◽  
1985 ◽  
Vol 50 (4) ◽  
pp. 530-538 ◽  
Author(s):  
P. M. Carrion ◽  
S. Hassanzadeh

Conventional velocity analysis of seismic data is based on normal moveout of common‐depth‐point (CDP) traveltime curves. Analysis is done in a hyperbolic framework and, therefore, is limited to using the small‐angle reflections only (muted data). Hence, it can estimate the interval velocities of compressional waves only, since mode conversion is negligible when small‐angle arrivals are concerned. We propose a new method which can estimate the interval velocities of compressional and mode‐converted waves separately. The method is based on slant stacking or plane‐wave decomposition (PWD) of the observed data (seismogram), which transforms the data from the conventional T-X domain into the intercept time‐ray parameter domain. Since PWD places most of the compressional energy into the precritical region of the slant‐stacked seismogram, the compressional‐wave interval velocities can be estimated using the “best ellipse” approximation on the assumption that the elliptic array velocity (stacking velocity) is approximately equal to the root‐mean‐square (rms) velocity. Similarly, shear‐wave interval velocities can be estimated by inverting the traveltime curves in the region of the PWD seismogram, where compressional waves decay exponentially (postcritical region). The method is illustrated by examples using synthetic and real data.

Geophysics ◽  
1985 ◽  
Vol 50 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Ross Alan Ensley

Shear waves differ from compressional waves in that their velocity is not significantly affected by changes in the fluid content of a rock. Because of this relationship, a gas‐related compressional‐wave “bright spot” or direct hydrocarbon indicator will have no comparable shear‐wave anomaly. In contrast, a lithology‐related compressional‐wave anomaly will have a corresponding shear‐wave anomaly. Thus, it is possible to use shear‐wave seismic data to evaluate compressional‐wave direct hydrocarbon indicators. This case study presents data from Myrnam, Alberta which exhibit the relationship between compressional‐ and shear‐wave seismic data over a gas reservoir and a low‐velocity coal.


Geophysics ◽  
1984 ◽  
Vol 49 (9) ◽  
pp. 1420-1431 ◽  
Author(s):  
Ross Alan Ensley

Compressional waves are sensitive to the type of pore fluid within rocks, but shear waves are only slightly affected by changes in fluid type. This suggests that a comparison of compressional‐ and shear‐wave seismic data recorded over a prospect may allow an interpreter to discriminate between gas‐related anomalies and those related to lithology. This case study documents that where a compressional‐wave “bright spot” or other direct hydrocarbon indicator is present, such a comparison can be used to verify the presence of gas. In practice, the technique can only be used for a qualitative evaluation. However, future improvement of shear‐wave data quality may enable the use of more quantitative methods as well.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. V317-V328
Author(s):  
Jitao Ma ◽  
Guoyang Xu ◽  
Xiaohong Chen ◽  
Xiaoliu Wang ◽  
Zhenjiang Hao

The parabolic Radon transform is one of the most commonly used multiple attenuation methods in seismic data processing. The 2D Radon transform cannot consider the azimuth effect on seismic data when processing 3D common-depth point gathers; hence, the result of applying this transform is unreliable. Therefore, the 3D Radon transform should be applied. The theory of the 3D Radon transform is first introduced. To address sparse sampling in the crossline direction, a lower frequency constraint is introduced to reduce spatial aliasing and improve the resolution of the Radon transform. An orthogonal polynomial transform, which can fit the amplitude variations in different parabolic directions, is combined with the dealiased 3D high-resolution Radon transform to account for the amplitude variations with offset of seismic data. A multiple model can be estimated with superior accuracy, and improved results can be achieved. Synthetic and real data examples indicate that even though our method comes at a higher computational cost than existing techniques, the developed approach provides better attenuation of multiples for 3D seismic data with amplitude variations.


Geophysics ◽  
1990 ◽  
Vol 55 (8) ◽  
pp. 998-1014 ◽  
Author(s):  
T. Klimentos ◽  
C. McCann

Anelastic attenuation is the process by which rocks convert compressional waves into heat and thereby modify the amplitude and phase of the waves. Understanding the causes of compressional wave attenuation is important in the acquisition, processing, and interpretation of high‐resolution seismic data, and in deducing the physical properties of rocks from seismic data. We have measured the attenuation coefficients of compressional waves in 42 sandstones at a confining pressure of 40 MPa (equivalent to a depth of burial of about 1.5 km) in a frequency range from 0.5 to 1.5 MHz. The compressional wave measurements were made using a pulse‐echo method in which the sample (5 cm diameter, 1.8 cm to 3.5 cm long) was sandwiched between perspex (lucite) buffer rods inside the high‐pressure rig. The attenuation of the sample was estimated from the logarithmic spectral ratio of the signals (corrected for beam spreading) reflected from the top and base of the sample. The results show that for these samples, compressional wave attenuation (α, dB/cm) at 1 MHz and 40 MPa is related to clay content (C, percent) and porosity (ϕ, percent) by α=0.0315ϕ+0.241C−0.132 with a correlation coefficient of 0.88. The relationship between attenuation and permeability is less well defined: Those samples with permeabilities less than 50 md have high attenuation coefficients (generally greater than 1 dB/cm) while those with permeabilities greater than 50 md have low attenuation coefficients (generally less than 1 dB/cm) at 1 MHz at 40 MPa. These experimental data can be accounted for by modifications of the Biot theory and by consideration of the Sewell/Urick theory of compressional wave attenuation in porous, fluid‐saturated media.


1979 ◽  
Vol 24 (90) ◽  
pp. 313-319
Author(s):  
Joseph F. Kirchner ◽  
Charles R. Bentley

AbstractSeismic short-refraction studies were carried out at five stations on the Ross Ice Shelf during the 1976–77 summer season as part of the comprehensive Ross Ice Shelf Geophysical and Glaciological Survey. Measurements of the velocities of compressional waves were made at each location. Compressional wave velocities were measured along more than one azimuth at three sites, and shear wave velocities (both components) at two. Travel-time curves were fitted to an exponential expression by means of a non-linear least-squares regression technique. The errors in the apparent velocities are estimated to be about ±50 m s–1 at short distances, diminishing to about ±10 m s–1 near the ends of the profiles. Compressional-wave velocities show only slight variations with azimuth and only over certain depth intervals, showing that constant-velocity surfaces are essentially horizontal. Shear-wave velocities, however, exhibit large variations according to azimuth and polarization, indicating that transverse isotropy is violated at least in the upper 30–40 m of the ice shelf. It is believed that the anisotropy is caused by structural details in the firn perhaps modified by preferred crystal orientation and that it may arise at least partly from anisotropic stresses in the ice shelf.


Geophysics ◽  
1987 ◽  
Vol 52 (12) ◽  
pp. 1631-1638 ◽  
Author(s):  
Rakesh Mithal ◽  
Emilio E. Vera

The plane‐wave decomposition and slant stacking of point‐source seismic data are not identical processes; they are, however, related. We have found that the algorithm for slant stacking can be used for plane‐wave decomposition if we apply a weighting function (depending on frequency and offset, and including a π/4 phase shift) before slant stacking, and a p-dependent correction after the slant stacking. This procedure requires only a small extra effort to incorporate the geometrical spreading and phase shift not accounted for by the slant stacking. In this process we use the asymptotic approximation for the zeroth‐order Bessel function. This approximation reduces the number of computations significantly, but it is valid only for ωpx greater than 2 or 3. Using this approximation, we have been able to obtain the correct plane‐wave decomposition of expanding spread profile data for ray parameters as low as 0.03 s/km; for smaller p, the exact Bessel function should be used. We have performed model studies to compare plane‐wave decomposition and slant stacking. Using a possible velocity model for the North Atlantic Transect (NAT) expanding spread profile (ESP 5), we computed synthetic seismograms at a 50 m spacing using the reflectivity method, and then computed the plane‐wave decomposition and slant stacks of these seismograms. On comparing these with the exact τ-p seismograms for this model, we found that the waveforms, the frequency content, and the amplitudes were exactly reproduced in the plane‐wave decomposition, but were significantly different in the slant stacks. We also computed the plane‐wave decomposition and slant stacks of real data (NAT ESP 5). The results in this case show that the amplitudes of deep crustal arrivals in plane‐wave decomposition are higher than in slant stacks, and therefore these arrivals can be identified much better in the plane‐wave decomposition.


Geophysics ◽  
1976 ◽  
Vol 41 (5) ◽  
pp. 837-849 ◽  
Author(s):  
Robert H. Tatham ◽  
Paul L. Stoffa

Theoretically and experimentally, the shear‐wave velocity of a porous rock has been shown to be less sensitive to fluid saturants than the compressional wave velocity. Thus, observation of the ratio of the seismic velocities for waves which traverse a changing or laterally varying zone of undersaturation or gas saturation could produce an observable anomaly which is independent of the regional variation in compressional wave velocity. One source of shear‐wave data in reflection seismic prospecting is mode conversion of P waves to shear waves in marine areas of high water bottom P-wave velocity. A relatively simple interpretative technique, based on amplitude variation as a function of the angle of incidence, is a possible discriminant between shear and multiple compressional arrivals, and data for a real case are shown. A normal moveout velocity analysis, carefully coupled with this offset discriminant, leads to the construction of a shear‐wave reflection section which can then be correlated with the usual compressional wave section. One such a section has been constructed, the variation in the ratio of the seismic velocities can be mapped, and potentially anomalous subsurface regions observed.


1979 ◽  
Vol 24 (90) ◽  
pp. 313-319 ◽  
Author(s):  
Joseph F. Kirchner ◽  
Charles R. Bentley

AbstractSeismic short-refraction studies were carried out at five stations on the Ross Ice Shelf during the 1976–77 summer season as part of the comprehensive Ross Ice Shelf Geophysical and Glaciological Survey. Measurements of the velocities of compressional waves were made at each location. Compressional wave velocities were measured along more than one azimuth at three sites, and shear wave velocities (both components) at two. Travel-time curves were fitted to an exponential expression by means of a non-linear least-squares regression technique. The errors in the apparent velocities are estimated to be about ±50 m s–1at short distances, diminishing to about ±10 m s–1near the ends of the profiles. Compressional-wave velocities show only slight variations with azimuth and only over certain depth intervals, showing that constant-velocity surfaces are essentially horizontal. Shear-wave velocities, however, exhibit large variations according to azimuth and polarization, indicating that transverse isotropy is violated at least in the upper 30–40 m of the ice shelf. It is believed that the anisotropy is caused by structural details in the firn perhaps modified by preferred crystal orientation and that it may arise at least partly from anisotropic stresses in the ice shelf.


Geophysics ◽  
1984 ◽  
Vol 49 (5) ◽  
pp. 509-520 ◽  
Author(s):  
M. D. McCormack ◽  
J. A. Dunbar ◽  
W. W. Sharp

This paper describes the use of surface recorded compressional and horizontal shear wave seismic data to detect lateral changes in the physical properties of a clastic unit. Shear and compressional wave transit times were measured across a selected interval from CDP stacked sections derived from data collected along coincident shear and compressional seismic lines. At each surface position the ratio of the shear to compressional transit time across the target horizon is calculated. It is shown that lateral variations in this ratio, coupled with the behavior of the individual transit time curves, can be used to infer changes in the physical properties of a formation. The horizon selected for this case study was the lower Pennsylvanian Morrow formation which produces gas from channel sand bodies at the Empire Abo field, New Mexico. A detailed geologic section of the producing horizon was mapped along a seismic line oriented so that it crossed productive and nonproductive regions of the field. Shear and compressional Vibroseis® surveys were conducted along this surface profile using data acquisition parameters designed to produce comparable signal‐to‐noise ratios and resolution in both sets of field data. After processing, the shear and compressional interval transit times through the Morrow formation decreased in going from nonproductive to productive thicknesses of sand. Furthermore there is a proportionately greater decrease in the shear wave transit time than in the compressional transit time resulting in an overall decrease in the ratio of shear to compressional transit times. While several possible physical changes in the lateral properties of the reservoir could explain these observations, it is concluded that the primary mechanism causing these ratio changes is variation in the sand‐shale ratio within the Morrow formation.


Geophysics ◽  
1991 ◽  
Vol 56 (11) ◽  
pp. 1831-1839 ◽  
Author(s):  
Kris Vasudevan ◽  
William G. Wilson ◽  
William G. Laidlaw

The residual statics problem in seismic data analysis is treated by introducing an optimization function that emphasizes the coherence of neighboring common depth point (CDP) gathers within a nonlinear simulated annealing technique. This optimization criterion contrasts with stack power optimization which only considers the coherence between traces within a single CDP. Emphasizing coherence between CDPs removes many of the phase space degeneracies that result from stack‐power based optimization techniques. We have applied the method to both synthetic and real data sets, and initial results display significant improvement over the input data in the coherence of reflections, even in structurally complex areas.


Sign in / Sign up

Export Citation Format

Share Document