Estimation of formation temperature from bottom‐hole temperature measurements: COST ♯1 well, Norton Sound, Alaska

Geophysics ◽  
1988 ◽  
Vol 53 (12) ◽  
pp. 1619-1621 ◽  
Author(s):  
S. Cao ◽  
C. Hermanrud ◽  
I. Lerche

We recently developed a numerical method, the Formation Temperature Estimation (FTE) model, to determine formation temperatures by inversion of borehole temperature (BHT) measurements (Cao et al., 1988a). For more than two BHT measurements, the FTE model can estimate (1) true formation temperature [Formula: see text], (2) mud temperature [Formula: see text] at the time the mud circulation stops, (3) thermal invasion distance R into the formation before the formation is at the true formation temperature, (4) formation thermal conductivity K perpendicular to the borehole, and (5) efficiency factor F for mud heating in the borehole after mud circulation has stopped. The method optimizes three free parameters: τ (diffusion time‐scale), ε (scaling parameter related to the thermal invasion distance R), and [Formula: see text] (normalized efficiency factor for mud heating.

Geophysics ◽  
1988 ◽  
Vol 53 (10) ◽  
pp. 1347-1354 ◽  
Author(s):  
Song Cao ◽  
Ian Lerche ◽  
Christian Hermanrud

Using nonlinear inverse techniques, we show that the change in borehole temperature with time, after mud circulation has stopped, can be used to provide very precise estimates of true formation temperatures and of mud temperature at the time circulation stopped. In addition, ruggedly stable estimates can also be made of the thermal invasion distance, the formation thermal conductivity, and the efficiency of heating the mud by the thermal recovery wave. It is well known that convective heat flow into (or out of) the formation influences the thermal recovery. We show that the flow rate at the borehole can also be obtained approximately from the borehole temperature measurements using the inverse method. Fidelity and reproducibility of the inverse procedure arc examined using synthetic data. Applications to field data from three wells in the Cooper basin of Australia and four wells in the North Sea confirm the accuracy of the method in satisfying the observed data, in determining true formation temperatures, and in assessing the magnitude of fluid penetration into the formation.


Geophysics ◽  
1988 ◽  
Vol 53 (7) ◽  
pp. 979-988 ◽  
Author(s):  
Song Cao ◽  
Ian Lerche ◽  
Christian Hermanrud

We describe a new numerical method that uses inverse methods to model thermal stabilization of a borehole after drilling mud circulation has stopped. The following five geophysical parameters can be estimated from the method: (1) true formation temperature [Formula: see text] (2) mud temperature [Formula: see text] at the time the mud circulation stops; (3) thermal invasion distance (R) into the formation before the formation is at the true formation temperature[Formula: see text]; (4) formation thermal conductivity (K) perpendicular to the borehole; and (5) efficiency factor (F) for heating mud in the borehole after mud circulation has stopped. Crucial input data for the model are the temperature measurements with shut‐in time taken at a fixed depth, more than two measurements being required, and the mud temperature at the surface at the time circulation stops. Other input data include the radius of the borehole, and the densities and specific heats of the drilling mud and of the formation on which the temperature measurements are made. Applications of the new inverse procedure to both synthetic data and field data show that the true formation temperature in many cases can be estimated precisely (to within about 0.4 percent); that the mud temperature can be estimated with acceptable accuracy (5 percent or so); while the thermal conductivity (K), the thermal invasion distance (R), and the efficiency factor (F) can be roughly estimated, provided high‐quality data are available.


2015 ◽  
Vol 12 (8) ◽  
pp. 7437-7467 ◽  
Author(s):  
J. E. Reynolds ◽  
S. Halldin ◽  
C. Y. Xu ◽  
J. Seibert ◽  
A. Kauffeldt

Abstract. Concentration times in small and medium-sized watersheds (~ 100–1000 km2) are commonly less than 24 h. Flood-forecasting models then require data at sub-daily time scales, but time-series of input and runoff data with sufficient lengths are often only available at the daily time scale, especially in developing countries. This has led to a search for time-scale relationships to infer parameter values at the time scales where they are needed from the time scales where they are available. In this study, time-scale dependencies in the HBV-light conceptual hydrological model were assessed within the generalized likelihood uncertainty estimation (GLUE) approach. It was hypothesised that the existence of such dependencies is a result of the numerical method or time-stepping scheme used in the models rather than a real time-scale-data dependence. Parameter values inferred showed a clear dependence on time scale when the explicit Euler method was used for modelling at the same time steps as the time scale of the input data (1–24 h). However, the dependence almost fully disappeared when the explicit Euler method was used for modelling in 1 h time steps internally irrespectively of the time scale of the input data. In other words, it was found that when an adequate time-stepping scheme was implemented, parameter sets inferred at one time scale (e.g., daily) could be used directly for runoff simulations at other time scales (e.g., 3 or 6 h) without any time scaling and this approach only resulted in a small (if any) model performance decrease, in terms of Nash–Sutcliffe and volume-error efficiencies. The overall results of this study indicated that as soon as sub-daily driving data can be secured, flood forecasting in watersheds with sub-daily concentration times is possible with model-parameter values inferred from long time series of daily data, as long as an appropriate numerical method is used.


2005 ◽  
Author(s):  
Alexander F. Zazovsky ◽  
Sammy S. Haddad ◽  
Vladimir V. Tertychnyi

1989 ◽  
Vol 8 ◽  
pp. 155-159
Author(s):  
R. E. Taam

AbstractThe current understanding of the common envelope binary phase of evolution is presented. The results obtained from the detailed computations of the hydrodynamical evolution of this phase demonstrate that the deposition of energy by the double core via frictional processes is sufficiently rapid to drive a mass outflow, primarily in the equatorial plane of the binary system. Specifically, recent calculations suggest that large amounts of mass and angular momentum can be lost from the binary system in a such a phase. Since the time scale for mass loss at the final phase of evolution is much shorter than the orbital decay time scale of the companion, the tranformation of binary systems from long orbital periods (> month) to short orbital periods (< day) is likely. The energy efficiency factor for the process is estimated to lie in the range between 0.3 and 0.6.


2007 ◽  
Vol 16 (07) ◽  
pp. 1211-1218 ◽  
Author(s):  
PING XI ◽  
XIN-ZHOU LI

In this paper, we investigate the evolution of classical wave propagation in the canonical acoustic black hole by a numerical method and discuss the details of the tail phenomenon. The oscillating frequency and damping time scale both increase with the angular momentum l. For lower l, numerical results show the lowest WKB approximation gives the most reliable result. We also find that the time scale of the interim region from ringing to tail is not affected obviously by changing l.


Sign in / Sign up

Export Citation Format

Share Document