Relations among hydrocarbon reservoirs, epigenetic sulfidization, and rock magnetization: Examples from the south Texas coastal plain

Geophysics ◽  
1991 ◽  
Vol 56 (6) ◽  
pp. 748-757 ◽  
Author(s):  
M. B. Goldhaber ◽  
R. L. Reynolds

This paper focuses on the association between concentrations of iron disulfide [Formula: see text] minerals in the shallow subsurface and underlying hydrocarbon accumulations. Such [Formula: see text] concentrations are the result of migration of either [Formula: see text] or organic constituents from the underlying hydrocarbons. The [Formula: see text] from reservoirs is produced inorganically from sulfate in the reservoir rocks at high temperature (>90°C) and migrates to shallower beds to react inorganically with iron to form [Formula: see text]. Organic constituents from reservoirs, in contrast, provide nourishment for sulfate reducing bacteria in shallow relatively cool (<90°C) beds. Sandstone in the Ray Point uranium district in Live Oak County, Texas contains abundant [Formula: see text] which formed both from deep‐seated [Formula: see text] and from [Formula: see text] produced in the shallow subsurface by bacteria that utilized organic materials from depth. Deep petroleum reservoirs were physically connected to near‐surface (<100 m) beds containing epigenetic [Formula: see text] by the Oakville fault. Epigenetic iron sulfide formation occurred in at least four episodes over at least five million years. Evidence from the Ray Point district and elsewhere in Texas illustrates that sulfidization reactions have destroyed magnetic iron‐titanium oxide minerals in the vicinity of major growth faults, resulting in a systematic decrease in magnetic susceptibility and magnitude of remanent magnetization in the vicinity of such faults. Growth faults which tap hydrocarbon deposits may be detectable using aeromagnetic methods.

2013 ◽  
Vol 825 ◽  
pp. 540-543
Author(s):  
Mariana Moreira ◽  
Silvana de Queiroz Silva ◽  
Mônica Cristina Teixeira

The objective of this work was to identify one bacterial consortium adapted to the cultivation in the presence of trivalent arsenic (AsIII). Samples were cultured in flasks containing modified Postgate C liquid medium (selective for sulfate-reducing bacteria, SRB). Six different As concentrations were used: 0.5, 1.0, 2.0, 4.0, 8.0 and 16 mg l-1. The growth of sulfate reducing microorganisms was indirectly observed by the formation of an iron sulfide black precipitate and also by the Eh measures.100 ml aliquots of cultured media were centrifuged and stored at-20°C for DNA extraction by phenol/chloroform method. Universal primers 968F-GC 1392R (Bacteria domain) were used for 16S ribosomal DNA amplification. Microbial diversity was evaluated by denaturing gradient gel electrophoresis (DGGE). After DGGE analysis 7 different bands were selected, cut, sequenced and analyzed using the Ribosomal Database Project Release. Consortium microorganisms identified were: Pantoea agglomerans, Enterobacter sp, Citrobacter sp, Cupriavidusmetallidurans, Ralstonia sp, Burkholderia cepacia and Bacillus sp. Thus the microbial consortium here identified is a good candidate for bioremediation of arsenic contaminated areas and effluents.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Huan Yang ◽  
Lanqian Gong ◽  
Hongming Wang ◽  
Chungli Dong ◽  
Junlei Wang ◽  
...  

Abstract Nickel–iron composites are efficient in catalyzing oxygen evolution. Here, we develop a microorganism corrosion approach to construct nickel–iron hydroxides. The anaerobic sulfate-reducing bacteria, using sulfate as the electron acceptor, play a significant role in the formation of iron sulfide decorated nickel–iron hydroxides, which exhibit excellent electrocatalytic performance for oxygen evolution. Experimental and theoretical investigations suggest that the synergistic effect between oxyhydroxides and sulfide species accounts for the high activity. This microorganism corrosion strategy not only provides efficient candidate electrocatalysts but also bridges traditional corrosion engineering and emerging electrochemical energy technologies.


2015 ◽  
Vol 814 ◽  
pp. 625-630
Author(s):  
Dong Xia Duan ◽  
Cun Guo Lin ◽  
Guang Zhou Liu ◽  
Ping Yao

Sulfate reducing bacteria (SRB) are traditionally considered as anaerobic organism. In this paper, the potential of sulfate reducing bacteria to cause mild steel corrosion under aerobic situation was investigated. Natural biopolymer agar and sulfate reducing bacteria cells were used to produce artificial biofilm. Micro-sensors were used to investigate the microenvironment in artificial biofilm. Environmental scanning electron microscopy and energy dispersive spectroscopy were used to study mild steel corrosion covered by artificial biofilm. The results indicated that SRB could grow and reduce sulfate both in suspension and in biofilm. The hydrogen sulfide produced by SRB and mild steel corrosion were influenced by the nutrients in the environment. The concentration of H2S in SRB biofilm exposed to culture medium was as twenty times as that exposed to marine water. The main corrosion product of mild steel in culture medium was iron sulfide, whereas the main product of mild steel in marine water was iron oxide.


2018 ◽  
Vol 64 (9) ◽  
pp. 629-637 ◽  
Author(s):  
William Stanley ◽  
Gordon Southam

Growth of two dissimilatory sulfate-reducing bacteria, Desulfosporosinus orientis (gram-positive) and Desulfovibrio desulfuricans (gram-negative), in a chemically defined culture medium resulted in similar growth rates (doubling times for each culture = 2.8 h) and comparable rates of H2S generation (D. orientis = 0.19 nmol/L S2–per cell per h; D. desulfuricans = 0.12 nmol/L S2–per cell per h). Transmission electron microscopy of whole mounts and thin sections revealed that the iron sulfide mineral precipitates produced by the two cultures were morphologically different. The D. orientis culture flocculated, with the minerals occurring as subhedral plate-like precipitates, which nucleated on the cell wall during exponential growth producing extensive mineral aggregates following cell autolysis and endospore release. In contrast, the D. desulfuricans culture produced fine-grained colloidal or platy iron sulfide precipitates primarily within the bulk solution. Mineral analysis by scanning electron microscopy – energy dispersive spectroscopy indicated that neither culture promoted advanced mineral development beyond a 1:1 Fe:S stoichiometry. This analysis did not detect pyrite (FeS2). The average Fe:S ratios were 1 : 1.09 ± 0.03 at 24 h and 1 : 1.08 ± 0.03 at 72 h for D. orientis and 1 : 1.05 ± 0.02 at 24 h and 1 : 1.09 ± 0.07 at 72 h for D. desulfuricans. The formation of “biogenic” iron sulfides by dissimilatory sulfate-reducing bacteria is influenced by bacterial cell surface structure, chemistry, and growth strategy, i.e., mineral aggregation occurred with cell autolysis of the gram-positive bacterium.


Pyrite ◽  
2015 ◽  
Author(s):  
David Rickard

The two basic processes concerning pyrite in the environment are the formation of pyrite, which usually involves reduction of sulfate to sulfide, and the destruction of pyrite, which usually involves oxidation of sulfide to sulfate. On an ideal planet these two processes might be exactly balanced. But pyrite is buried in sediments sometimes for hundreds of millions of years, and the sulfur in this buried pyrite is removed from the system, so the balance is disturbed. The lack of balance between sulfide oxidation and sulfate reduction powers a global dynamic cycle for sulfur. This would be complex enough if this were the whole story. However, as we have seen, both the reduction and oxidation arms of the global cycle are essentially biological—specifically microbiological—processes. This means that there is an intrinsic link between the sulfur cycle and life on Earth. In this chapter, we examine the central role that pyrite plays, and has played, in determining the surface environment of the planet. In doing so we reveal how pyrite, the humble iron sulfide mineral, is a key component of maintaining and developing life on Earth. In Chapter 4 we concluded that Mother Nature must be particularly fond of pyrite framboids: a thousand billion of these microscopic raspberry-like spheres are formed in sediments every second. If we translate this into sulfur production, some 60 million tons of sulfur is buried as pyrite in sediments each year. But this is only a fraction of the total amount of sulfide produced every year by sulfate-reducing bacteria. In 1982 the Danish geomicrobiologist Bo Barker Jørgensen discovered that as much as 90% of the sulfide produced by sulfate-reducing bacteria was rapidly reoxidized by sulfur-oxidizing microorganisms. Sulfate-reducing microorganisms actually produce about 300 million tons of sulfur each year, but about 240 million tons is reoxidized. The magnitude of the sulfide production by sulfate-reducing bacte­ria can be appreciated by comparison with the sulfur produced by volcanoes. As discussed in Chapter 5, it was previously supposed that all sulfur, and thus pyrite, had a volcanic origin. In fact volcanoes produce just 10 million tons of sulfur each year.


2006 ◽  
Vol 72 (5) ◽  
pp. 3733-3737 ◽  
Author(s):  
Francesca Cappitelli ◽  
Elisabetta Zanardini ◽  
Giancarlo Ranalli ◽  
Emilio Mello ◽  
Daniele Daffonchio ◽  
...  

ABSTRACT An improved methodology to remove black crusts from stone by using Desulfovibrio vulgaris subsp. vulgaris ATCC 29579, a sulfate-reducing bacterium, is presented. The strain removed 98% of the sulfates of the crust in a 45-h treatment. Precipitation of black iron sulfide was avoided using filtration of a medium devoid of iron. Among three cell carriers, Carbogel proved to be superior to both sepiolite and Hydrobiogel-97, as it allowed an easy application of the bacteria, kept the system in a state where microbial activity was maintained, and allowed easy removal of the cells after the treatment.


2020 ◽  
Vol 132 (15) ◽  
pp. 6051-6055 ◽  
Author(s):  
Xiao Deng ◽  
Naoshi Dohmae ◽  
Anna H. Kaksonen ◽  
Akihiro Okamoto

2016 ◽  
Vol 66 (2) ◽  
pp. 227-256 ◽  
Author(s):  
Christopher V. Jeans ◽  
Alexandra V. Turchyn ◽  
Xu-Fang Hu

AbstractThe relationship between the development of iron sulfide and barite nodules in the Cenomanian Chalk of England and the presence of a red hematitic pigment has been investigated using sulfur isotopes. In southern England where red and pink chalks are absent, iron sulfide nodules are widespread. Two typical large iron sulfide nodules exhibit δ34S ranging from −48.6‰ at their core to −32.6‰ at their outer margins. In eastern England, where red and pink chalks occur in three main bands, there is an antipathetic relationship between the coloured chalks and the occurrence of iron sulfide or barite nodules. Here iron sulfide, or its oxidised remnants, are restricted to two situations: (1) in association with hard grounds that developed originally in chalks that contained the hematite pigment or its postulated precursor FeOH3, or (2) in regional sulfidization zones that cut across the stratigraphy. In the Cenomanian Chalk exposed in the cliffs at Speeton, Yorkshire, pyrite and marcasite (both iron sulfide) nodules range in δ34S from −34.7‰ to +40.0‰. In the lower part of the section δ34S vary from −34.8‰ to +7.8‰, a single barite nodule has δ34S between +26.9‰ and +29.9‰. In the middle part of the section δ34S ranges from +23.8‰ to +40.0‰. In the sulfidization zones that cut across the Cenomanian Chalk of Lincolnshire the iron sulfide nodules are typically heavily weathered but these may contain patches of unoxidised pyrite. In these zones, δ34S ranges from −32.9‰ to +7.9‰. The cross-cutting zones of sulfidization in eastern England are linked to three basement faults – the Flamborough Head Fault Zone, the Caistor Fault and the postulated Wash Line of Jeans (1980) – that have affected the deposition of the Chalk. It is argued that these faults have been both the conduits by which allochthonous fluids – rich in hydrogen sulfide/sulfate, hydrocarbons and possibly charged with sulfate-reducing bacteria – have penetrated the Cenomanian Chalk as the result of movement during the Late Cretaceous or Cenozoic. These invasive fluids are associated with (1) the reduction of the red hematite pigment or its praecursor, (2) the subsequent development of both iron sulfides and barite, and (3) the loss of overpressure in the Cenomanian Chalk and its late diagenetic hardening by anoxic cementation. Evidence is reviewed for the origin of the red hematite pigment of the coloured chalks and for the iron involved in the development of iron sulfides, a hydrothermal or volcanogenic origin is favoured.


Sign in / Sign up

Export Citation Format

Share Document