Implementation of the Kirchhoff integral for elastic waves in staggered‐grid modeling schemes

Geophysics ◽  
1994 ◽  
Vol 59 (12) ◽  
pp. 1894-1901 ◽  
Author(s):  
Rune Mittet

Implementation of boundary conditions in finite‐difference schemes is not straightforward for the elastic wave equation if a staggered grid formulation is used. Reverse time migration of VSP data requires a proper description of the recording surface so as not to excite false P‐ and S‐waves. Such contributions may cause artifacts in the imaging procedure. The boundary conditions for the elastic stress tensor can be implemented numerically in a staggered coarse grid modeling scheme by using band‐limited spatial delta‐functions and band‐limited first‐order derivatives of these spatial delta‐functions. A representation theorem for elastic waves is derived to test the implementation of the spatial part of the boundary condition. The implementation is tested in a 2-D numerical experiment for a closed, but curved, boundary S enclosing a volume V. The test condition is that within the volume V, the difference between the forward modeled field and the retropropagated field should be equal to zero. Both P‐ and S‐waves are properly recovered in a 2-D reverse time modeling example. The numerical artifacts related to the proposed spatial approximation of the boundary condition are found to be negligible.

Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. S35-S49 ◽  
Author(s):  
Xiang Xiao ◽  
W. Scott Leaney

To avoid the defocusing effects of propagating waves through salt and overburden with an inaccurate overburden velocity model, we introduce a vertical seismic profiling (VSP) local elastic reverse-time-migration (RTM) method for salt-flank imaging by transmitted P-to-S waves. This method back-projects the transmitted PS waves using a local velocity model around the well until they are in phase with the back-projected PP waves at the salt boundaries. The merits of this method are that it does not require the complex overburden and salt-body velocities and it automatically accounts for source-side statics. In addition, the method accounts for kinematic and dynamic effects, including anisotropy, absorption, and all other unknown rock effects outside of this lo-cal subsalt velocity model. Numerical tests on an elastic salt model and offset 2D VSP data in the Gulf of Mexico, using a finite-difference time-domain staggered-grid RTM scheme, partly demonstrate the effectiveness of this method over interferometry PS-PP transmission migration and local acoustic RTM. Our method separates elastic wavefields to vector P- and S-wave velocity components at the trial image point and achieves better resolution than local acoustic RTM and interferometric transmission migration. The analytical formulas of migration resolution for local acoustic and elastic RTM show that the migration illumination is limited by data frequency and receiver aperture, and the spatial resolution is lower than standard poststack and prestack migration. This new method can image salt flanks as well as subsalt reflectors.


Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. A1-A6 ◽  
Author(s):  
Robin P. Fletcher ◽  
Johan O. Robertsson

We propose two new boundary conditions to regulate coherent reflections from the model boundaries in numerical solutions of wave equations. Both boundary conditions have the common feature that the boundary condition is varied with respect to time. The first boundary condition expands or contracts the computational model during a modeling simulation. The effect is to cause a Doppler shift in the reflected wavefield that can be used to shift energy outside a frequency band of interest. In addition, when the computational domain is expanding, the range of possible incidence angles on the boundary is restricted. This can be used to increase the effectiveness of many existing absorbing boundary conditions that are more effective for incidence angles close to normal. The second boundary condition is an extension of random boundaries. By carefully changing the realization of a random boundary over time, a more diffusive wavefield can be simulated. We show results with 2D numerical simulations of the scalar wave equation for both these boundary conditions. The first boundary condition has application to modeling, but both these boundary conditions have potential application within algorithms that rely upon modeling kernels, such as reverse-time migration and full-waveform inversion.


Geophysics ◽  
2021 ◽  
pp. 1-78
Author(s):  
Zhiyuan Li ◽  
Youshan Liu ◽  
Guanghe Liang ◽  
Guoqiang Xue ◽  
Runjie Wang

The separation of P- and S-wavefields is considered to be an effective approach for eliminating wave-mode cross-talk in elastic reverse-time migration. At present, the Helmholtz decomposition method is widely used for isotropic media. However, it tends to change the amplitudes and phases of the separated wavefields compared with the original wavefields. Other methods used to obtain pure P- and S-wavefields include the application of the elastic wave equations of the decoupled wavefields. To achieve a high computational accuracy, staggered-grid finite-difference (FD) schemes are usually used to numerically solve the equations by introducing an additional stress variable. However, the computational cost of this method is high because a conventional hybrid wavefield (P- and S-wavefields are mixed together) simulation must be created before the P- and S-wavefields can be calculated. We developed the first-order particle velocity equations to reduce the computational cost. The equations can describe four types of particle velocity wavefields: the vector P-wavefield, the scalar P-wavefield, the vector S-wavefield, and the vector S-wavefield rotated in the direction of the curl factor. Without introducing the stress variable, only the four types of particle velocity variables are used to construct the staggered-grid FD schemes, so the computational cost is reduced. We also present an algorithm to calculate the P and S propagation vectors using the four particle velocities, which is simpler than the Poynting vector. Finally, we applied the velocity equations and propagation vectors to elastic reverse-time migration and angle-domain common-image gather computations. These numerical examples illustrate the efficiency of the proposed methods.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. S333-S345 ◽  
Author(s):  
Pengfei Yu ◽  
Jianhua Geng ◽  
Xiaobo Li ◽  
Chenlong Wang

Conventionally, multicomponent geophones used to record the elastic wavefields in the solid seabed are necessary for ocean bottom seismic (OBS) data elastic reverse time migration (RTM). Particle velocity components are usually injected directly as boundary conditions in the elastic-wave equation in the receiver-side wavefield extrapolation step, which causes artifacts in the resulting elastic images. We have deduced a first-order acoustic-elastic coupled equation (AECE) by substituting pressure fields into the elastic velocity-stress equation (EVSE). AECE has three advantages for OBS data over EVSE when performing elastic RTM. First, the new equation unifies wave propagation in acoustic and elastic media. Second, the new equation separates P-waves directly during wavefield propagation. Third, three approaches are identified when using the receiver-side multicomponent particle velocity records and pressure records in elastic RTM processing: (1) particle velocity components are set as boundary conditions in receiver-side vectorial extrapolation with the AECE, which is equal to the elastic RTM using the conventional EVSE; (2) the pressure component may also be used for receiver-side scalar extrapolation with the AECE, and with which we can accomplish PP and PS images using only the pressure records and suppress most of the artifacts in the PP image with vectorial extrapolation; and (3) ocean-bottom 4C data can be simultaneously used for elastic images with receiver-side tensorial extrapolation using the AECE. Thus, the AECE may be used for conventional elastic RTM, but it also offers the flexibility to obtain PP and PS images using only pressure records.


2018 ◽  
Vol 26 (01) ◽  
pp. 1750033 ◽  
Author(s):  
Jiangang Xie ◽  
Mingwei Zhuang ◽  
Zichao Guo ◽  
Hai Liu ◽  
Qing Huo Liu

Reverse time migration (RTM), especially that for elastic waves, consumes massive computation resources which limit its wide applications in industry. We suggest to use the pseudospectral time-domain (PSTD) method in elastic wave RTM. RTM using PSTD can significantly reduce the computational requirements compared with RTM using the traditional finite difference time domain method (FDTD). In addition to the advantage of low sampling rate with high accuracy, the PSTD method also eliminates the periodicity (or wraparound) limitation caused by fast Fourier transform in the conventional pseudospectral method. To achieve accurate results, the PSTD method needs only about half the spatial sampling rate of the twelfth-order FDTD method. Thus, the PSTD method can save up to 87.5% storage memory and 90% computation time over the twelfth-order FDTD method. We implement RTM using PSTD for elastic wave equations and accelerate it by Open Multi-Processing technology. To keep the computational load balance in parallel computation, we design a new PML layout which merges the PML in both ends of an axis together. The efficiency and imaging quality of the proposed RTM is verified by imaging on 2D and 3D models.


Geophysics ◽  
2012 ◽  
Vol 77 (5) ◽  
pp. S105-S115 ◽  
Author(s):  
Rui Yan ◽  
Xiao-Bi Xie

An angle-domain imaging condition is recommended for multicomponent elastic reverse time migration. The local slant stack method is used to separate source and receiver waves into P- and S-waves and simultaneously decompose them into local plane waves along different propagation directions. We calculated the angle-domain partial images by crosscorrelating every possible combination of the incident and scattered plane P- and S-waves and then organized them into P-P and P-S local image matrices. Local image matrix preserves all the angle information related to the seismic events. Thus, by working in the image matrix, it is convenient to perform different angle-domain operations (e.g., filtering artifacts, correcting polarity, or conducting illumination and acquisition aperture compensations). Because local image matrix is localized in space, these operations can be designed to be highly flexible, e.g., target-oriented, dip-angle-dependent or reflection-angle-dependent. After performing angle-domain operations, we can stack the partial images in the local image matrix to generate the depth image, or partially sum them up to produce different angle-domain common image gathers, which can be used for amplitude versus angle and migration velocity analysis. We tested several numerical examples to demonstrate the applications of this angle-domain image condition.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. T359-T373
Author(s):  
Jeffrey Shragge ◽  
Tugrul Konuk

Numerical solutions of 3D isotropic elastodynamics form the key computational kernel for many isotropic elastic reverse time migration and full-waveform inversion applications. However, real-life scenarios often require computing solutions for computational domains characterized by non-Cartesian geometry (e.g., free-surface topography). One solution strategy is to compute the elastodynamic response on vertically deformed meshes designed to incorporate irregular topology. Using a tensorial formulation, we have developed and validated a novel system of semianalytic equations governing 3D elastodynamics in a stress-velocity formulation for a family of vertically deformed meshes defined by Bézier interpolation functions between two (or more) nonintersecting surfaces. The analytic coordinate definition also leads to a corresponding analytic free-surface boundary condition (FSBC) as well as expressions for wavefield injection and extraction. Theoretical examples illustrate the utility of the tensorial approach in generating analytic equations of 3D elastodynamics and the corresponding FSBCs for scenarios involving free-surface topography. Numerical examples developed using a fully staggered grid with a mimetic finite-difference formulation demonstrate the ability to model the expected full-wavefield behavior, including complex free-surface interactions.


Sign in / Sign up

Export Citation Format

Share Document