3-D ground‐penetrating radar applied to fracture imaging in gneiss

Geophysics ◽  
1996 ◽  
Vol 61 (4) ◽  
pp. 1050-1064 ◽  
Author(s):  
Mark Grasmueck

Three‐dimensional, ground‐penetrating radar (georadar) techniques suitable for geological engineering applications have been developed and tested. Initial experiments were conducted on the floor of a quarry in southern Switzerland from which ornamental gneissic rock is extracted. During a brief two‐day period, constant‐offset georadar data were recorded over a [Formula: see text] area with a grid cell size of 0.1 m × 0.2 m. Georadar velocities were estimated from the results of expanding spread surveys. All georadar data and associated geometry files were recorded automatically in seismic industry formats. The experimental georadar data set was processed, image‐enhanced, and interpreted using [Formula: see text] seismic reflection software operating on a workstation. Arbitrary vertical sections, time slices, [Formula: see text] images, and animated movies in which the observer “travels” through the entire data volume were constructed from the resultant migrated georadar data. Semi‐automatic tracking routines allowed continuous subhorizontal reflections to a maximum depth of 30 m to be mapped through the rock mass. These reflections, which are characterized by negative polarity onsets, are probably caused by a system of ubiquitous water‐filled fractures, 2–4 cm thick. Volumes of rock bounded by the subhorizontal fractures were estimated from isopach maps and rock quality was assessed on the basis of root‐mean‐square (rms) amplitudes of reflections. An extension of a steep‐dipping fault exposed on a nearby quarry wall was best delineated on maps representing the horizontal gradients of reflection times. To synthesize in a single figure the principal geological results of the study, picked reflection times were presented in the form of shaded relief surfaces, in which remarkably vivid structural details of the subhorizontal fractures and intersecting near‐vertical fault could be discerned. It is concluded that 3-D georadar methods have the potential to resolve a wide range of engineering and environmental problems.

Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. K39-K42 ◽  
Author(s):  
James D. Irving ◽  
Rosemary J. Knight

To obtain tomographic images with the highest possible resolution from crosshole ground-penetrating radar (GPR) data, raypaths covering a wide range of angles between the boreholes are required. In practice, however, the inclusion of high-angle ray data in crosshole GPR inversions often leads to tomograms so dominated by inversion artifacts that they contain little reliable subsurface information. Here, we investigate the problems that arise from the standard assumption that all first-arriving energy travels directly between the centers of the antennas. Through numerical modeling, we show that this assumption is often incorrect at high transmitter-receiver angles and can lead to significant errors in tomographic velocity estimates when the antenna length is a significant fraction of the borehole spacing.


1977 ◽  
Vol 99 (3) ◽  
pp. 480-485 ◽  
Author(s):  
I. S. Gartshore ◽  
K. A. De Croos

Using a data correlation for the wall stress associated with very rough boundaries and a semi-empirical calculation method, the shape of boundary layers in exact equilibrium with the roughness beneath them is calculated. A wide range of roughness geometries (two- and three-dimensional elements) is included by the use of equivalent surfaces of equal drag per unit area. Results can be summarized in a single figure which relates the shape factor of the boundary layer (its exponent if it has a power law velocity profile) to the height of the roughness elements and their spacing. New data for one turbulent boundary layer developing over a long fetch of uniform roughness is presented. Wall shear stress, measured directly from a drag plate is combined with boundary layer integral properties to show that the shear stress correlation adopted is reasonably accurate and that the boundary layer is close to equilibrium after passing over a streamwise roughness fetch equal to about 350 times the roughness element height. An example is given of the way in which roughness geometry may be chosen from calculated equilibrium results, for one particular boundary layer thickness and a shape useful for simulating strong atmospheric winds in a wind tunnel.


1992 ◽  
Vol 16 (3) ◽  
pp. 319-338 ◽  
Author(s):  
Trevor Hoey

Temporal variability in bedload transport rates and spatial variability in sediment storage have been reported with increasing frequency in recent years. A spatial and temporal classification for these features is suggested based on the gravel bedform classification of Church and Jones (1982). The identified scales, meso-, macro-, and mega- are each broad, and within each there is a wide range of processes acting to produce bedload fluctuations. Sampling the same data set with different sampling intervals yields a near linear relationship between sampling interval and pulse period. A range of modelling strategies has been applied to bed waves. The most successful have been those which allow for the three-dimensional nature of sediment storage processes, and which allow changes in the width and depth of stored sediment. The existence of bed waves makes equilibrium in gravel-bed rivers necessarily dynamic. Bedload pulses and bed waves can be regarded as equilibrium forms at sufficiently long timescales.


2019 ◽  
Vol 11 (4) ◽  
pp. 405
Author(s):  
Xuan Feng ◽  
Haoqiu Zhou ◽  
Cai Liu ◽  
Yan Zhang ◽  
Wenjing Liang ◽  
...  

The subsurface target classification of ground penetrating radar (GPR) is a popular topic in the field of geophysics. Among the existing classification methods, geometrical features and polarimetric attributes of targets are primarily used. As polarimetric attributes contain more information of targets, polarimetric decomposition methods, such as H-Alpha decomposition, have been developed for target classification of GPR in recent years. However, the classification template used in H-Alpha classification is preset depending on the experience of synthetic aperture radar (SAR); therefore, it may not be suitable for GPR. Moreover, many existing classification methods require excessive human operation, particularly when outliers exist in the sample (the data set containing the features of targets); therefore, they are not efficient or intelligent. We herein propose a new machine learning method based on sample centers, i.e., particle center supported plane (PCSP). The sample center is defined as the point with the smallest sum of distances from all points in the same sample, which is considered as a better representation of the sample without significant effect of the outliers. In this proposed method, particle swarm optimization (PSO) is performed to obtain the sample centers; the new criterion for subsurface target classification is achieved. We applied this algorithm to full polarimetric GPR data measured in the laboratory and outdoors. The results indicate that, comparing with support vector machine (SVM) and classical H-Alpha classification, this new method is more efficient and the accuracy is relatively high.


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. WA119-WA129 ◽  
Author(s):  
Anja Rutishauser ◽  
Hansruedi Maurer ◽  
Andreas Bauder

On the basis of a large data set, comprising approximately 1200 km of profile lines acquired with different helicopter-borne ground-penetrating radar (GPR) systems over temperate glaciers in the western Swiss Alps, we have analyzed the possibilities and limitations of using helicopter-borne GPR surveying to map the ice-bedrock interface. We have considered data from three different acquisition systems including (1) a low-frequency pulsed system hanging below the helicopter (BGR), (2) a stepped frequency system hanging below the helicopter (Radar Systemtechnik GmbH [RST]), and (3) a commercial system mounted directly on the helicopter skids (Geophysical Survey Systems Incorporated [GSSI]). The systems showed considerable differences in their performance. The best results were achieved with the BGR system. On average, the RST and GSSI systems yielded comparable results, but we observed significant site-specific differences. A comparison with ground-based GPR data found that the quality of helicopter-borne data is inferior, but the compelling advantages of airborne surveying still make helicopter-borne data acquisition an attractive option. Statistical analyses concerning the bedrock detectability revealed not only large differences between the different acquisition systems but also between different regions within our investigation area. The percentage of bedrock reflections identified (with respect to the overall profile length within a particular region) varied from 11.7% to 68.9%. Obvious factors for missing the bedrock reflections included large bedrock depths and steeply dipping bedrock interfaces, but we also observed that internal features within the ice body may obscure bedrock reflections. In particular, we identified a conspicuous “internal reflection band” in many profiles acquired with the GSSI system. We attribute this feature to abrupt changes of the water content within the ice, but more research is required for a better understanding of the nature of this internal reflection band.


Radio Science ◽  
2019 ◽  
Vol 54 (8) ◽  
pp. 728-737 ◽  
Author(s):  
Wenji Zhang ◽  
Ahmad Hoorfar ◽  
Qiang An

The Holocene ◽  
2020 ◽  
Vol 30 (6) ◽  
pp. 820-833 ◽  
Author(s):  
Erica Corradini ◽  
Dennis Wilken ◽  
Marco Zanon ◽  
Daniel Groß ◽  
Harald Lübke ◽  
...  

We investigate the landscape development of the early Mesolithic hunter-gatherer sites of Duvensee (10000–6500 cal. BCE). Based on ground-penetrating radar (GPR) and geoarchaeological drillings, we present for the first time a three-dimensional (3D) reconstruction of the palaeoenvironment of 63 ha covering subarea of the former lake during the Mesolithic. The archaeological aims were (1) to detect the location of former islands possibly hosting hunter-gatherer settlements and (2) to reconstruct the ancient landscape development for understanding prehistoric land use. The research in Duvensee lasts almost 100 years, providing vivid illustrations of early Mesolithic life. Clusters of Mesolithic camps have been found located on small sand hills that formed islands in the prehistoric lake. For this environment, we present depth maps of the three most important sedimentary facies interfaces of the ancient Lake Duvensee. Interface1 represents the transition between coarse organic sediments (peat and coarse detritus gyttja) and fine-grained organic sediments (fine detritus gyttja, calcareous gyttja), Interface2 represents the transition to the underlying clayish-loamy sediments, and Interface3 marks the top of the basal sand deposits at the lake bottom. From Interface3, we identified the location and extent of five former islands with Mesolithic camps. Stratigraphic information from the corings enabled us to create a 3D model of the spatio-temporal development of the Duvensee bog. The locations of the islands and their estimated dive-up times agree with the spatio-temporal pattern of the previous archaeological finds. The model shows where hunter-gatherers could settle and move from one island to another following the shorelines of the overgrowing lake. The 3D stratigraphic model provides growth and shrinking rates of the island and lake areas in the Mesolithic, and volumes of organic and non-organic deposited lake sediments. Besides, it provides a basis for a sustainable groundwater management needed for heritage preservation.


Sign in / Sign up

Export Citation Format

Share Document