Multifrequency viscoacoustic modeling and inversion

Geophysics ◽  
1996 ◽  
Vol 61 (5) ◽  
pp. 1371-1378 ◽  
Author(s):  
Qingbo Liao ◽  
George A. McMechan

Modeling and inversion for seismic wavefields that include the attenuation and phase dispersion effects of Q can be implemented in the space‐frequency domain. The viscoacoustic wave equation is solved by the moment method. Absorbing boundary conditions are implemented by reducing Q and adjusting the complex velocity (to reduce Q‐dependent reflectivity) in a zone around the edges of the model grid. Nonlinear inversion is performed using iterative linearized inversions. The residual wavefield at a single frequency is back projected, using an anticausal Green’s function, along the viscoacoustic wavepath in an estimate of the model, to get updated velocity and Q distributions. The model obtained from data at one frequency becomes input to inversion at the next higher frequency. Velocity and Q are inverted simultaneously as they are interdependent. Both modeling and inversion algorithms are successfully tested with synthetic examples; data at two or three frequencies are sufficient to produce reliable images from noise‐free synthetic data.

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 912-918
Author(s):  
M. E. Hayder ◽  
Fang Q. Hu ◽  
M. Y. Hussaini

2020 ◽  
Vol 66 (4) ◽  
pp. 773-793 ◽  
Author(s):  
Arman Shojaei ◽  
Alexander Hermann ◽  
Pablo Seleson ◽  
Christian J. Cyron

Abstract Diffusion-type problems in (nearly) unbounded domains play important roles in various fields of fluid dynamics, biology, and materials science. The aim of this paper is to construct accurate absorbing boundary conditions (ABCs) suitable for classical (local) as well as nonlocal peridynamic (PD) diffusion models. The main focus of the present study is on the PD diffusion formulation. The majority of the PD diffusion models proposed so far are applied to bounded domains only. In this study, we propose an effective way to handle unbounded domains both with PD and classical diffusion models. For the former, we employ a meshfree discretization, whereas for the latter the finite element method (FEM) is employed. The proposed ABCs are time-dependent and Dirichlet-type, making the approach easy to implement in the available models. The performance of the approach, in terms of accuracy and stability, is illustrated by numerical examples in 1D, 2D, and 3D.


1992 ◽  
Vol 40 (11) ◽  
pp. 2095-2099 ◽  
Author(s):  
J.A. Morente ◽  
J.A. Porti ◽  
M. Khalladi

2012 ◽  
Vol 60 (12) ◽  
pp. 5727-5742 ◽  
Author(s):  
Yashwanth R. Padooru ◽  
Alexander B. Yakovlev ◽  
Chandra S. R. Kaipa ◽  
George W. Hanson ◽  
Francisco Medina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document