On the importance of benchmarking algorithms under realistic noise conditions

2020 ◽  
Vol 221 (1) ◽  
pp. 504-520
Author(s):  
Claire Birnie ◽  
Kit Chambers ◽  
Doug Angus ◽  
Anna L Stork

SUMMARY Testing with synthetic data sets is a vital stage in an algorithm’s development for benchmarking the algorithm’s performance. A common addition to synthetic data sets is White, Gaussian Noise (WGN) which is used to mimic noise that would be present in recorded data sets. The first section of this paper focuses on comparing the effects of WGN and realistic modelled noise on standard microseismic event detection and imaging algorithms using synthetic data sets with recorded noise as a benchmark. The data sets with WGN underperform on the trace-by-trace algorithm while overperforming on algorithms utilizing the full array. Throughout, the data sets with realistic modelled noise perform near identically to the recorded noise data sets. The study concludes by testing an algorithm that simultaneously solves for the source location and moment tensor of a microseismic event. Not only does the algorithm fail to perform at the signal-to-noise ratios indicated by the WGN results but the results with realistic modelled noise highlight pitfalls of the algorithm not previously identified. The misleading results from the WGN data sets highlight the need to test algorithms under realistic noise conditions to gain an understanding of the conditions under which an algorithm can perform and to minimize the risk of misinterpretation of the results.

Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. S197-S205 ◽  
Author(s):  
Zhaolun Liu ◽  
Abdullah AlTheyab ◽  
Sherif M. Hanafy ◽  
Gerard Schuster

We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength [Formula: see text] of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third [Formula: see text]. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half [Formula: see text].


Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 849-860 ◽  
Author(s):  
Jörg Herwanger ◽  
Hansruedi Maurer ◽  
Alan G. Green ◽  
Jürg Leckebusch

A vertical‐gradient magnetic system based on optically pumped Cesium sensors has been used to map subtle magnetic anomalies across infilled pit houses and ditches at a medieval archeological site in northern Switzerland. For estimating the locations and dimensions of these features from the recorded data, we have designed and implemented an appropriate inversion scheme. Tests of this scheme on realistic synthetic data sets suggested that suitable minimum magnetic susceptibility contrasts and smoothing parameters for the inversion may be directly extracted from the data. Inversions with minimum magnetic susceptibility contrasts generated causative bodies with maximum plausible sizes. By using higher magnetic susceptibility contrasts, a complete suite of models that matched the data equally well was produced. To constrain better the magnetic susceptibility constrast within a selected area of the archeological site, shallow samples of topsoil and sediment were analyzed in the laboratory. An inversion based on the measured magnetic susceptibility contrast yielded reliable estimates of the locations, 3-D geometries, and sizes of two small pit houses. The depth extent of one pit house was subsequently verified by shallow drilling. We concluded that inversions of vertical‐gradient magnetic data constrained by magnetic susceptibility or shallow borehole information are rapid and inexpensive means of providing key knowledge on the depth distribution of inductively magnetized bodies.


2015 ◽  
Vol 113 ◽  
pp. 51-63 ◽  
Author(s):  
Juan I. Sabbione ◽  
Mauricio D. Sacchi ◽  
Danilo R. Velis

2022 ◽  
Author(s):  
Xiaoyu Zhu ◽  
Jeffrey Shragge

Real-time microseismic monitoring is essential for understanding fractures associated with underground fluid injection in unconventional reservoirs. However, microseismic events recorded on monitoring arrays are usually contaminated with strong noise. With a low signal-to-noise ratio (S/R), the detection of microseismic events is challenging using conventional detection methods such as the short-term average/long-term average (STA/LTA) technique. Common machine learning methods, e.g., feature extraction plus support vector machine (SVM) and convolutional neural networks (CNNs), can achieve higher accuracy with strong noise, but they are usually time-consuming and memory-intensive to run. We propose the use of YOLOv3, a state-of-art real-time object detection system in microseismic event detection. YOLOv3 is a one-stage deep CNN detector that predicts class confidence and bounding boxes for images at high speed and with great precision. With pre-trained weights from the ImageNet 1000-class competition dataset, physics-based training of the YOLOv3 algorithm is performed on a group of forward modeled synthetic microseismic data with varying S/R. We also add randomized forward-modeled surface seismic events and Gaussian white noise to generate ``semi-realistic'' training and testing datasets. YOLOv3 is able to detect weaker microseismic event signals with low signal-to-noise ratios (e.g., S/N=0.1) and achieves a mean average precision of 88.71\% in near real time. Further work is required to test YOLOv3 in field production settings.


2019 ◽  
Vol 73 (8) ◽  
pp. 893-901
Author(s):  
Sinead J. Barton ◽  
Bryan M. Hennelly

Cosmic ray artifacts may be present in all photo-electric readout systems. In spectroscopy, they present as random unidirectional sharp spikes that distort spectra and may have an affect on post-processing, possibly affecting the results of multivariate statistical classification. A number of methods have previously been proposed to remove cosmic ray artifacts from spectra but the goal of removing the artifacts while making no other change to the underlying spectrum is challenging. One of the most successful and commonly applied methods for the removal of comic ray artifacts involves the capture of two sequential spectra that are compared in order to identify spikes. The disadvantage of this approach is that at least two recordings are necessary, which may be problematic for dynamically changing spectra, and which can reduce the signal-to-noise (S/N) ratio when compared with a single recording of equivalent duration due to the inclusion of two instances of read noise. In this paper, a cosmic ray artefact removal algorithm is proposed that works in a similar way to the double acquisition method but requires only a single capture, so long as a data set of similar spectra is available. The method employs normalized covariance in order to identify a similar spectrum in the data set, from which a direct comparison reveals the presence of cosmic ray artifacts, which are then replaced with the corresponding values from the matching spectrum. The advantage of the proposed method over the double acquisition method is investigated in the context of the S/N ratio and is applied to various data sets of Raman spectra recorded from biological cells.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 4950
Author(s):  
Gianmarco Romano

The moment-based M2M4 signal-to-noise (SNR) estimator was proposed for a complex sinusoidal signal with a deterministic but unknown phase corrupted by additive Gaussian noise by Sekhar and Sreenivas. The authors studied its performances only through numerical examples and concluded that the proposed estimator is asymptotically efficient and exhibits finite sample super-efficiency for some combinations of signal and noise power. In this paper, we derive the analytical asymptotic performances of the proposed M2M4 SNR estimator, and we show that, contrary to what it has been concluded by Sekhar and Sreenivas, the proposed estimator is neither (asymptotically) efficient nor super-efficient. We also show that when dealing with deterministic signals, the covariance matrix needed to derive asymptotic performances must be explicitly derived as its known general form for random signals cannot be extended to deterministic signals. Numerical examples are provided whose results confirm the analytical findings.


2014 ◽  
Vol 7 (3) ◽  
pp. 781-797 ◽  
Author(s):  
P. Paatero ◽  
S. Eberly ◽  
S. G. Brown ◽  
G. A. Norris

Abstract. The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement of factor elements (BS-DISP). The goal of these methods is to capture the uncertainty of PMF analyses due to random errors and rotational ambiguity. It is shown that the three methods complement each other: depending on characteristics of the data set, one method may provide better results than the other two. Results are presented using synthetic data sets, including interpretation of diagnostics, and recommendations are given for parameters to report when documenting uncertainty estimates from EPA PMF or ME-2 applications.


2014 ◽  
Vol 556-562 ◽  
pp. 6328-6331
Author(s):  
Su Zhen Shi ◽  
Yi Chen Zhao ◽  
Li Biao Yang ◽  
Yao Tang ◽  
Juan Li

The LIFT technology has applied in process of denoising to ensure the imaging precision of minor faults and structure in 3D coalfield seismic processing. The paper focused on the denoising process in two study areas where the LIFT technology is used. The separation of signal and noise is done firstly. Then denoising would be done in the noise data. The Data of weak effective signal that is from the noise data could be blended with the original effective signal to reconstruct the denoising data, so the result which has high signal-to-noise ratio and preserved amplitude is acquired. Thus the fact shows that LIFT is an effective denoising method for 3D seismic in coalfield and could be used widely in other work area.


Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1514-1524 ◽  
Author(s):  
Edip Baysal ◽  
Dan D. Kosloff ◽  
John W. C. Sherwood

Migration of stacked or zero‐offset sections is based on deriving the wave amplitude in space from wave field observations at the surface. Conventionally this calculation has been carried out through a depth extrapolation. We examine the alternative of carrying out the migration through a reverse time extrapolation. This approach may offer improvements over existing migration methods, especially in cases of steeply dipping structures with strong velocity contrasts. This migration method is tested using appropriate synthetic data sets.


Author(s):  
Sarasij Das ◽  
Nagendra Rao P S

This paper is the outcome of an attempt in mining recorded power system operational data in order to get new insight to practical power system behavior. Data mining, in general, is essentially finding new relations between data sets by analyzing well known or recorded data. In this effort we make use of the recorded data of the Southern regional grid of India. Some interesting relations at the total system level between frequency, total MW/MVAr generation, and average system voltage have been obtained. The aim of this work is to highlight the potential of data mining for power system applications and also some of the concerns that need to be addressed to make such efforts more useful.


Sign in / Sign up

Export Citation Format

Share Document