Seismic, gravity and magnetics, a complementary geophysical study of the Paqualin Structure, Timor Sea, Australia

1989 ◽  
Vol 20 (2) ◽  
pp. 25 ◽  
Author(s):  
P.M. Smith ◽  
M. Whitehead

The presence of a large anomalous structure in the northern part of Permit AC/P2 in the Timor Sea has been recognised ever since seismic data were first acquired in the area. Historically, however, sparse seismic coverage has always prevented a detailed and unambiguous interpretation of the complicated structure. In order to overcome this problem, some 2000 km of 3D seismic data were acquired over the feature. In conjunction with this seismic survey, detailed gravity and magnetic data sets were also recorded over the structure.Interpretation of the new seismic data indicated the presence of a piercement structure which is associated with a small negative Bouguer gravity anomaly and a magnetic intensity anomaly resulting from a positive susceptibility contrast. Modelling of the magnetic data indicated that an acidic or intermediate intrusive body was the most likely cause of the piercement structure. The presence of an acidic intrusive body was consistent with the gravity data which indicated that no large density contrast existed between the material of the piercement structure and the surrounding sediments.The combined interpretation of these three data sets was tested by a well, Paqualin-1, drilled on the flank of the piercement structure. The well encountered a thick evaporite sequence with associated thin bands of magnetitie and intermediate igneous rocks. It was logged with a three component downhole magnetic probe and forward magentic modelling work incorporating the results of the magnetic log gave good agreement with the observed aeromagnetic profiles.


1989 ◽  
Vol 20 (2) ◽  
pp. 303
Author(s):  
B.M. Haines ◽  
B.A. McConachie

The Carpentaria Basin in the west/central portion of Cape York Peninsula is largely unexplored for petroleum, and there is an apparent ambiguity in the basement depths interpreted from gravity and aeromagnetic data. It was decided that deep seismic refraction surveys at a variety of sites should prove cost-effective in defining the geologic model for the basin. Of particular interest is the possible existence of a north-south trending elongate infrabasin inferred qualitatively from a strong gravity low shown Figure 1. Results of the refraction work indicate that the magnetic and gravity data suggestive of the presence of an infrabasin are probably related to lithological variations within basement. Furthermore, it is improbable that the thickness of the sedimentary pile anywhere within the area of investigation exceeds 1100 metres. Basement velocities are high, from 5500m/sec to 6200m/sec, typical of fresh igneous and/or metamorphic lithologies. Carbonates could not be totally excluded on the basis of these velocities alone, but are improbable in view of the gravity and magnetic data. At some locations there is evidence for the presence of an intermediate section of higher velocity within the sedimentary sequence. This is thought to be quite thin, and possibly representative of the Toolebuc Formation.



2020 ◽  
Vol 221 (3) ◽  
pp. 1542-1554 ◽  
Author(s):  
B C Root

SUMMARY Current seismic tomography models show a complex environment underneath the crust, corroborated by high-precision satellite gravity observations. Both data sets are used to independently explore the density structure of the upper mantle. However, combining these two data sets proves to be challenging. The gravity-data has an inherent insensitivity in the radial direction and seismic tomography has a heterogeneous data acquisition, resulting in smoothed tomography models with de-correlation between different models for the mid-to-small wavelength features. Therefore, this study aims to assess and quantify the effect of regularization on a seismic tomography model by exploiting the high lateral sensitivity of gravity data. Seismic tomography models, SL2013sv, SAVANI, SMEAN2 and S40RTS are compared to a gravity-based density model of the upper mantle. In order to obtain similar density solutions compared to the seismic-derived models, the gravity-based model needs to be smoothed with a Gaussian filter. Different smoothening characteristics are observed for the variety of seismic tomography models, relating to the regularization approach in the inversions. Various S40RTS models with similar seismic data but different regularization settings show that the smoothening effect is stronger with increasing regularization. The type of regularization has a dominant effect on the final tomography solution. To reduce the effect of regularization on the tomography models, an enhancement procedure is proposed. This enhancement should be performed within the spectral domain of the actual resolution of the seismic tomography model. The enhanced seismic tomography models show improved spatial correlation with each other and with the gravity-based model. The variation of the density anomalies have similar peak-to-peak magnitudes and clear correlation to geological structures. The resolvement of the spectral misalignment between tomographic models and gravity-based solutions is the first step in the improvement of multidata inversion studies of the upper mantle and benefit from the advantages in both data sets.



Geophysics ◽  
2000 ◽  
Vol 65 (5) ◽  
pp. 1514-1526 ◽  
Author(s):  
Alvin K. Benson ◽  
Andrew R. Floyd

Gravity and magnetic data were collected in the Mosida Hills, Utah County, Utah, at over 1100 stations covering an area of approximately 58 km2 (150 mi2) in order to help define the subsurface geology and assess potential geological hazards for urban planning in an area where the population is rapidly increasing. In addition, potential hydrocarbon traps and mineral ore bodies may be associated with some of the interpreted subsurface structures. Standard processing techniques were applied to the data to remove known variations unrelated to the geology of the area. The residual data were used to generate gravity and magnetic contour maps, isometric projections, profiles, and subsurface models. Ambiguities in the geological models were reduced by (1) incorporating data from previous geophysical surveys, surface mapping, and aeromagnetic data, (2) integrating the gravity and magnetic data from our survey, and (3) correlating the modeled cross sections. Gravity highs and coincident magnetic highs delineate mafic lava flows, gravity lows and magnetic highs reflect tuffs, and gravity highs and magnetic lows spatially correlate with carbonates. These correlations help identify the subsurface geology and lead to new insights about the formation of the associated valleys. At least eight new faults (or fault segments) were identified from the gravity data, whereas the magnetic data indicate the existence of at least three concealed and/or poorly exposed igneous bodies, as well as a large ash‐flow tuff. The presence of low‐angle faults suggests that folding or downwarping, in addition to faulting, played a role in the formation of the valleys in the Mosida Hills area. The interpreted location and nature of concealed faults and volcanic flows in the Mosida Hills area are being used by policy makers to help develop mitigation procedures to protect life and property.



2016 ◽  
Author(s):  
Godfred Osukuku ◽  
Abiud Masinde ◽  
Bernard Adero ◽  
Edmond Wanjala ◽  
John Ego

Abstract This research work attempts to map out the stratigraphic sequence of the Kerio Valley Basin using magnetic, gravity and seismic data sets. Regional gravity data consisting of isotactic, free-air and Bouguer anomaly grids were obtained from the International Gravity Bureau (BGI). Magnetic data sets were sourced from the Earth Magnetic Anomaly grid (EMAG2). The seismic reflection data was acquired in 1989 using a vibrating source shot into inline geophones. Gravity Isostacy data shows low gravity anomalies that depict a deeper basement. Magnetic tilt and seismic profiles show sediment thickness of 2.5-3.5 Km above the basement. The Kerio Valley Basin towards the western side is underlain by a deeper basement which are overlain by succession of sandstones/shales and volcanoes. At the very top are the mid Miocene phonolites (Uasin Gishu) underlain by mid Miocene sandstones/shales (Tambach Formation). There are high gravity anomalies in the western and southern parts of the basin with the sedimentation being constrained by two normal faults. The Kerio Valley Basin is bounded to the west by the North-South easterly dipping fault system. Gravity data was significantly of help in delineating the basement, scanning the lithosphere and the upper mantle according to the relative densities. The basement rocks as well as the upper cover of volcanoes have distinctively higher densities than the infilled sedimentary sections within the basin. From the seismic profiles, the frequency of the shaley rocks and compact sandstones increases with depths. The western side of the basin is characterized by the absence of reflections and relatively higher frequency content. The termination of reflectors and the westward dip of reflectors represent a fault (Elgeyo fault). The reflectors dip towards the west, marking the basin as an asymmetrical syncline, indicating that the extension was towards the east. The basin floor is characterized by a nearly vertical fault which runs parallel to the Elgeyo fault. The seismic reflectors show marked discontinuities which may be due to lava flows. The deepest reflector shows deep sedimentation in the basin and is in reasonable agreement with basement depths delineated from potential methods (gravity and magnetic). Basement rocks are deeper at the top of the uplift footwall of the Elgeyo Escarpment. The sediments are likely of a thickness of about 800 M which is an interbed of sandstones and shales above the basement.



Author(s):  
Richard M. Carruthers ◽  
John D. Cornwell

Lateral variations in the density and magnetization of the rocks within the crust give rise to "anomalies" in the Earth's gravity and magnetic fields. These anomalies can be measured and interpreted in terms of the geology both in a qualitative sense, by mapping out trends and changes in anomaly style, and quantitatively, by creating models of the subsurface which reproduce the observed fields. Such interpretations are generally less definitive in themselves than the results from seismic surveys (see chapter 12), but the data are widely available and can provide information in areas where other methods are ineffective or have not been applied. As the different geophysical techniques respond to specific rock properties such as density, magnetization, and acoustic velocity, the results are complementary, and a fully integrated approach to data collection and interpretation is generally more effective than the sum of its parts assessed on an individual basis. Gravity and magnetic data have been acquired, at least to a reconnaissance scale, over most of the world. In particular, the release into the public domain of satellite altimetry information (combined with improved methods of data processing) means that there is gravity coverage to a similar standard for most of the offshore region to within about 50 km of the coast. Magnetic anomalies recorded from satellites provide global coverage, but the high altitude of the observations means that only large-scale features extending over many 10s of kilometers are delineated. Reconnaissance aeromagnetic surveys with flight lines 10-20 km apart provide a lateral anomaly resolution similar to that of the satellite gravity data. Oceanographic surveys undertaken by a variety of academic and research institutions are another valuable source of data in remote regions offshore which supplement and extend the more detailed coverage obtained over the continental shelves, for example, by oil companies in areas of hydrocarbon interest. Surveys over land vary widely in terms of acquisition parameters and quality, but some form of national compilation is available from many countries. A number of possible applications of the potential field (i.e., gravity and magnetic) data follow from the terms set out by UNCLOS. Paragraph 4(b) of article 76 states, "In the absence of evidence to the contrary, the foot of the continental slope is to be determined as the point of maximum change in the gradient at its base" (italics added).



2005 ◽  
Vol 17 (2) ◽  
pp. 213-224 ◽  
Author(s):  
A. MUÑOZ-MARTÍN ◽  
M. CATALÁN ◽  
J. MARTÍN-DÁVILA ◽  
A. CARBÓ

Deception Island is a young, active volcano located in the south-western part of Bransfield Strait, between the Antarctic Peninsula and the South Shetland archipelago. New gravity and magnetic data, from a marine geophysical cruise (DECVOL-99), were analysed. Forty-eight survey lines were processed and mapped around Deception Island to obtain Bouguer and magnetic anomaly maps. These maps show well- defined groups of gravity and magnetic anomalies, as well as their gradients. To constrain the upper crustal structure, we have performed 2+1/2D forward modelling on three profiles perpendicular to the main anomalies of the area, and taking into account previously published seismic information. From the gravity and magnetic models, two types of crust were identified. These were interpreted as continental crust (located north of Deception Island) and more basic crust (south of Deception Island). The transition between these crustal types is evident in the Bouguer anomaly map as a high gradient area trending NE–SW. Both magnetic and gravity data show a wide minimum at the eastern part of Deception Island, which suggests a very low bulk susceptibility and low density intrusive body. With historical recorded eruptions and thermal and fumarolic fields, we interpret this anomaly as a partially melted intrusive body. Its top has been estimated to be at 1.7 km depth using Euler deconvolution techniques.



1994 ◽  
Vol 34 (1) ◽  
pp. 529 ◽  
Author(s):  
G.W. O'Brien ◽  
C.V. Reeves ◽  
P.R. Milligan ◽  
M.P. Morse ◽  
E.M. Alexander ◽  
...  

The integration of high resolution, image-processed aeromagnetic data with regional geological, magnetic, gravity and seismic data-sets has provided new insights into the structural architecture, rifting history, and petroleum potential of the western onshore and offshore Otway Basin, south-eastern Australia.Three principal structural directions are evident from the magnetic data: NS, NE-ENE and NW-WNW. The structural fabric and regional geological data suggest that the rifting history of the basin may have taken place in two distinct stages, rather than within a simple rift-to-drift framework. The initial stage, from 150 to ~120 Ma, took place within a stress regime dominated by NW-SE extensional transport, similar to that of the basins within the Great Australian Bight to the west. ENE-striking extensional rift segments, such as the Crayfish Platform-Robe Trough and the Torquay Sub-Basin, developed during this period, contemporaneous with the deposition of thick sediments of the Early Cretaceous (Tithonian-Hauterivian) Crayfish Subgroup. In other parts of the basin, NW-striking rift segments, such as the Penola, and perhaps Ardonachie, Troughs onshore, developed within a strongly trans-tensional (left-lateral strike-slip) environment. At ~120 Ma, the regional stress field changed, and the Crayfish Subgroup-aged rift segments were reactivated, with uplift and block faulting extending through to perhaps 117 Ma. Rifting then recommenced at about 117 Ma (contemporaneous with the deposition of the Barremian-Albian Eumeralla Formation), though the extensional transport direction was now oriented NNE-SSW, almost perpendicular to that of the earlier Crayfish Subgroup rift stage. This later rift episode ultimately led to continental breakup at ~96 Ma and produced the 'traditional' normal fault orientations (NW-SE to WNW-ESE) throughout the Otway Basin.



1995 ◽  
Vol 35 (1) ◽  
pp. 44
Author(s):  
I. F. Young ◽  
T.M. Schmedje ◽  
W.F. Muir

The Elang-1 oil discovery in the Timor Gap Zone of Cooperation (ZOC) has established a new oil province in the eastern Timor Sea. The discovery well, completed in February 1994, recorded a flow of 5,800 BOPD (5,013 STBOPD) from marine sandstone of the Late Jurassic Montara beds. The oil is a light (56° API), undersaturated oil with a GOR of approximately 550 SCF/STB. Elang-1 was the first well drilled by the ZOCA 91-12 Joint Venture and only the fifth well in the ZOC since exploration of this frontier area resumed in 1992.The Elang Prospect, initially mapped by Petroz in the late 1970s on the basis of regional seismic data, was detailed by the 1992 Walet Seismic Survey. The prospect is the main crestal culmination on the Elang Trend, a prominent structural high to the north of the Flamingo High that was established during continental break-up in the Late Jurassic. The Elang Trend is bounded to the south by a series of en-echelon normal faults and connecting relay ramps and comprises a number of horst and tilted fault blocks.Elang-1 tested a near crestal culmination on the Elang Prospect and intersected a 76.5 m gross oil column below 3,006.5 m RT. At time of drilling this oil column was the thickest that had been encountered by any well in the Northern Bonaparte Basin. Good quality reservoir sandstone in six discrete bodies were intersected within the Montara beds. Core-measured porosity and permeability range up to 17 per cent and 2.2 Darcies within the oil column.Subsequent to the Elang discovery, the Joint Venture recorded a 402 km2 3D survey over the Elang Trend. Elang-2, an appraisal well spudded in September 1994 prior to receipt of the 3D data, established the lateral continuity of the Montara beds reservoirs. Flow rates of 6,080 BOPD (5,300 STBOPD) and 7,500 BOPD (5,970 STBOPD) from separate intervals have confirmed that high deliverabilities can be expected from individual sandstones. Further appraisal drilling is planned in the first half of 1995. This is expected to lead to commercial development of the field.



2011 ◽  
Vol 51 (2) ◽  
pp. 746
Author(s):  
Irina Borissova ◽  
Gabriel Nelson

In 2008–9, under the Offshore Energy Security Program, Geoscience Australia (GA) acquired 650 km of seismic data, more than 3,000 km of gravity and magnetic data, and, dredge samples in the southern Carnarvon Basin. This area comprises the Paleozoic Bernier Platform and southern part of the Mesozoic Exmouth Sub-basin. The new seismic and potential field data provide a new insight into the structure and sediment thickness of the deepwater southernmost part of the Exmouth Sub-basin. Mesozoic depocentres correspond to a linear gravity low, in water depths between 1,000–2,000 m and contain between 2–3 sec (TWT) of sediments. They form a string of en-echelon northeast-southwest oriented depressions bounded by shallow-dipping faults. Seismic data indicates that these depocentres extend south to at least 24°S, where they become more shallow and overprinted by volcanics. Potential plays in this part of the Exmouth Sub-basin may include fluvio-deltaic Triassic sandstone and Lower–Middle Jurassic claystone source rocks sealed by the regional Early Cretaceous Muderong shale. On the adjoining Bernier Platform, minor oil shows in the Silurian and Devonian intervals at Pendock–1a indicate the presence of a Paleozoic petroleum system. Ordovician fluvio-deltaic sandstones sealed by the Silurian age marine shales, Devonian reef complexes and Miocene inversion anticlines are identified as potential plays. Long-distance migration may contribute to the formation of additional plays close to the boundary between the two provinces. With a range of both Mesozoic and Paleozoic plays, this under-explored region may have a significant hydrocarbon potential.



Sign in / Sign up

Export Citation Format

Share Document