Full‐wave anisotropic elastic inversion of synthetic crosswell seismic data

Author(s):  
Christophe Barnes ◽  
Marwan Charara ◽  
Terry Tsuchiya
2020 ◽  
Author(s):  
S. Amoyedo ◽  
E. Tawile ◽  
S. Pou-Palome ◽  
P. Kakaire ◽  
O. Olagundoye ◽  
...  

2022 ◽  
Vol 41 (1) ◽  
pp. 40-46
Author(s):  
Öz Yilmaz ◽  
Kai Gao ◽  
Milos Delic ◽  
Jianghai Xia ◽  
Lianjie Huang ◽  
...  

We evaluate the performance of traveltime tomography and full-wave inversion (FWI) for near-surface modeling using the data from a shallow seismic field experiment. Eight boreholes up to 20-m depth have been drilled along the seismic line traverse to verify the accuracy of the P-wave velocity-depth model estimated by seismic inversion. The velocity-depth model of the soil column estimated by traveltime tomography is in good agreement with the borehole data. We used the traveltime tomography model as an initial model and performed FWI. Full-wave acoustic and elastic inversions, however, have failed to converge to a velocity-depth model that desirably should be a high-resolution version of the model estimated by traveltime tomography. Moreover, there are significant discrepancies between the estimated models and the borehole data. It is understandable why full-wave acoustic inversion would fail — land seismic data inherently are elastic wavefields. The question is: Why does full-wave elastic inversion also fail? The strategy to prevent full-wave elastic inversion of vertical-component geophone data trapped in a local minimum that results in a physically implausible near-surface model may be cascaded inversion. Specifically, we perform traveltime tomography to estimate a P-wave velocity-depth model for the near-surface and Rayleigh-wave inversion to estimate an S-wave velocity-depth model for the near-surface, then use the resulting pairs of models as the initial models for the subsequent full-wave elastic inversion. Nonetheless, as demonstrated by the field data example here, the elastic-wave inversion yields a near-surface solution that still is not in agreement with the borehole data. Here, we investigate the limitations of FWI applied to land seismic data for near-surface modeling.


2019 ◽  
Vol 38 (2) ◽  
pp. 144-150 ◽  
Author(s):  
Marianne Rauch-Davies ◽  
David Langton ◽  
Michael Bradshaw ◽  
Allon Bartana ◽  
Dan Kosloff ◽  
...  

With readily available wide-azimuth, onshore, 3D seismic data, the search for attributes utilizing the azimuthal information is ongoing. Theoretically, in the presence of ordered fracturing, the seismic wavefront shape changes from spherical to nonspherical with the propagation velocity being faster parallel to the fracturing and slower perpendicular to the fracture direction. This concept has been adopted and is used to map fracture direction and density within unconventional reservoirs. More specifically, azimuthal variations in normal moveout velocity or migration velocity are often used to infer natural fracture orientation. Analyses of recent results have called into question whether azimuthal velocity linked to intrinsic azimuthal velocity variations can actually be detected from seismic data. By use of 3D orthorhombic anisotropic elastic simulation, we test whether fracture orientation and intensity can be detected from seismic data. We construct two subsurface models based on interpreted subsurface layer structure of the Anadarko Basin in Oklahoma. For the first model, the material parameters in the layers are constant vertically transverse isotropic (VTI) in all intervals. The second model was constructed the same way as the base model for all layers above the Woodford Shale Formation. For the shale layer, orthorhombic properties were introduced. In addition, a thicker wedge layer was added below the shale layer. Using the constructed model, synthetic seismic data were produced by means of 3D anisotropic elastic simulation resulting in two data sets: VTI and orthorhombic. The simulated data set was depth migrated using the VTI subsurface model. After migration, the residual moveouts on the migrated gathers were analyzed. The analysis of the depth-migrated model data indicates that for the typical layer thicknesses of the Woodford Shale layer in the Anadarko Basin, observed and modeled percentage of anisotropy and target depth, the effect of intrinsic anisotropy is too small to be detected in real seismic data.


2021 ◽  
Author(s):  
Pavlo Kuzmenko ◽  
Rustem Valiakhmetov ◽  
Francesco Gerecitano ◽  
Viktor Maliar ◽  
Grigori Kashuba ◽  
...  

Abstract The seismic data have historically been utilized to perform structural interpretation of the geological subsurface. Modern approaches of Quantitative Interpretation are intended to extract geologically valuable information from the seismic data. This work demonstrates how rock physics enables optimal prediction of reservoir properties from seismic derived attributes. Using a seismic-driven approach with incorporated prior geological knowledge into a probabilistic subsurface model allowed capturing uncertainty and quantifying the risk for targeting new wells in the unexplored areas. Elastic properties estimated from the acquired seismic data are influenced by the depositional environment, fluid content, and local geological trends. By applying the rock physics model, we were able to predict the elastic properties of a potential lithology away from the well control points in the subsurface whether or not it has been penetrated. Seismic amplitude variation with incident angle (AVO) and azimuth (AVAZ) jointly with rock-derived petrophysical interpretations were used for stochastical modeling to capture the reservoir distribution over the deep Visean formation. The seismic inversion was calibrated by available well log data and by traditional structural interpretation. Seismic elastic inversion results in a deep Lower Carboniferous target in the central part of the DDB are described. The fluid has minimal effect on the density and Vp. Well logs with cross-dipole acoustics are used together with wide-azimuth seismic data, processed with amplitude control. It is determined that seismic anisotropy increases in carbonate deposits. The result covers a set of lithoclasses and related probabilities: clay minerals, tight sandstones, porous sandstones, and carbonates. We analyzed the influence of maximum angles determination for elastic inversion that varied from 32.5 to 38.5 degrees. The greatest influence of the far angles selection is on the density. AI does not change significantly. Probably the 38,5 degrees provides a superior response above the carbonates. It does not seem to damage the overall AVA behavior, which result in a good density outcome, as higher angles of incidence are included. It gives a better tie to the wells for the high density layers over the interval of interest. Sand probability cube must always considered in the interpretation of the lithological classification that in many cases may be misleading (i.e. when sand and shale probabilities are very close to each other, because of small changes in elastic parameters). The authors provide an integrated holistic approach for quantitative interpretation, subsurface modeling, uncertainty evaluation, and characterization of reservoir distribution using pre-existing well logs and recently acquired seismic data. This paper underpins the previous efforts and encourages the work yet to be fulfilled on this subject. We will describe how quantitative interpretation was used for describing the reservoir, highlight values and uncertainties, and point a way forward for further improvement of the process for effective subsurface modeling.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCC91-WCC103 ◽  
Author(s):  
Christophe Barnes ◽  
Marwan Charara

Marine reflection seismic data inversion is a compute-intensive process, especially in three dimensions. Approximations often are made to limit the number of physical parameters we invert for, or to speed up the forward modeling. Because the data often are dominated by unconverted P-waves, one popular approximation is to consider the earth as purely acoustic, i.e., no shear modulus. The material density sometimes is taken as a constant. Nonlinear waveform seismic inversion consists of iteratively minimizing the misfit between the amplitudes of the measured and the modeled data. Approximations, such as assuming an acoustic medium, lead to incorrect modeling of the amplitudes of the seismic waves, especially with respect to amplitude variation with offset (AVO), and therefore have a direct impact on the inversion results. For evaluation purposes, we have performed a series of inversions with different approximations and different constraints whereby the synthetic data set to recover is computed for a 1D elastic medium. A series of numerical experiments, although simple, help to define the applicability domain of the acoustic assumption. Acoustic full-wave inversion is applicable only when the S-wave velocity and the density fields are smooth enough to reduce the AVO effect, or when the near-offset seismograms are inverted with a good starting model. However, in many realistic cases, acoustic approximation penalizes the full-wave inversion of marine reflection seismic data in retrieving the acoustic parameters.


Geophysics ◽  
2013 ◽  
Vol 78 (2) ◽  
pp. F7-F15 ◽  
Author(s):  
Robin M. Weiss ◽  
Jeffrey Shragge

Efficiently modeling seismic data sets in complex 3D anisotropic media by solving the 3D elastic wave equation is an important challenge in computational geophysics. Using a stress-stiffness formulation on a regular grid, we tested a 3D finite-difference time-domain solver using a second-order temporal and eighth-order spatial accuracy stencil that leverages the massively parallel architecture of graphics processing units (GPUs) to accelerate the computation of key kernels. The relatively small memory of an individual GPU limits the model domain sizes that can be computed on a single device. To circumvent this constraint and move toward modeling industry-sized 3D anisotropic elastic data sets, we parallelized computation across multiple GPU devices by using domain decomposition and, for each time step, employing an interdevice communication protocol to exchange data values falling within interior boundaries of each subdomain. For two or more GPU devices within a single compute node, we use direct peer-to-peer (i.e., GPU-to-GPU) communication, whereas for networked nodes we employed message-passing interface directives to route data over the network. Our 2D GPU-based anisotropic elastic modeling tests achieved a [Formula: see text] speedup relative to an OpenMP CPU implementation run on an eight-core machine, whereas our 3D tests using dual-GPU devices produced up to a [Formula: see text] speedup. The performance boost afforded by the GPU architecture allowed us to model seismic data for 3D anisotropic elastic models at lower hardware cost and in less time than has been previously possible.


1989 ◽  
Vol 77 (6) ◽  
pp. 877-890 ◽  
Author(s):  
F. Assous ◽  
B. Chalindar ◽  
F. Collino

Sign in / Sign up

Export Citation Format

Share Document