Ground-penetrating radar survey and tracer observations at the West Pearl Queen carbon sequestration pilot site, New Mexico

2005 ◽  
Vol 24 (7) ◽  
pp. 718-722 ◽  
Author(s):  
Thomas H. Wilson ◽  
Arthur W. Wells ◽  
J. Rodney Diehl ◽  
Grant S. Bromhal ◽  
Duane H. Smith ◽  
...  
2020 ◽  
Author(s):  
Dirk Hays ◽  
Matt Wolfe ◽  
Iliyana Dobreva ◽  
Henry Ruiz

<p>Currently atmospheric carbon has reached 405 ppm or 720 GtC.  As is widely known, this increasing atmospheric carbon dioxide, methane and nitrous oxide are primary contributing factors in increasing global temperatures.  Current measurements show that sources of emission such as the burning of fossil fuels contributes 9.9 GtC/yr, while land use change contributes 1.5 GtC/yr. We have identified that crops possessing a subsurface rhizome in particular, in addition to high root biomass, are essential and capable of increasing crop derived soil carbon sequestration by 10-fold.  If the presence of a high biomass rhizome were bred into the world’s major grain crops wheat, rice, maize, barley, sorghum and millets and grown worldwide in no-tillage conditions, these crops could sequester and offset current carbon emissions by 9Gt carbon on a yearly basis. We have developed a new ground penetrating radar instrument and analytical software, which will be presented, as a needed for high throughput non-destructive phenotyping, selection and speed breeding new high root biomass cultivars of the worlds major cultivated crops and forages as a key component for crop-based carbon sequestration driven climate change mitigation. </p>


2002 ◽  
Vol 9 (2) ◽  
pp. 93-104 ◽  
Author(s):  
Hiroyuki Kamei ◽  
Magdy Ahmed Atya ◽  
Tareq Fahmy Abdallatif ◽  
Masato Mori ◽  
Pasomphone Hemthavy

2020 ◽  
Author(s):  
thomas urban

<p>Recent field research at White Sands National Park, New Mexico, USA, has used ground-penetrating radar to detect the footprints of Pleistocene humans, mammoths, and ground sloths. The technique has been succesful with a range of antenna frequencies and for detecting footprints of many different sizes. Perhaps more importantly, the method has been shown to successfully detect fooprints that are not visible to the human eye, often with sufficent detail to differntiate species. This work raises an obvious question about whether GPR could be used to detect footprints in a range of other contexts, or whether the circumstances seen at White Sands are unique. </p>


Geophysics ◽  
1978 ◽  
Vol 43 (7) ◽  
pp. 1441-1448 ◽  
Author(s):  
L. T. Dolphin ◽  
W. B. Beatty ◽  
J. D. Tanzi

Ground‐penetrating radar and resistivity measurements were made on 20–31 March 1977 in support of limited exploration and excavation of Victorio Peak, White Sands Missile Range, New Mexico, by Expeditions Unlimited. The survey by SRI International (formerly Stanford Research Institute) confirms the existence of large caverns beneath the mountain as well as tunnels, fissures, and other features of geophysical interest, pertinent to the legends that a treasure cache was discovered within the peak in 1937. The uniqueness of the radar work reported is a result of lower‐than‐average radio‐frequency attenuation in the peak permitting sounding to depths as great as 400 ft.


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


2017 ◽  
Vol 3 (1) ◽  
pp. 73-83
Author(s):  
Rahmayati Alindra ◽  
Heroe Wijanto ◽  
Koredianto Usman

Ground Penetrating Radar (GPR) adalah salah satu jenis radar yang digunakan untuk menyelidiki kondisi di bawah permukaan tanah tanpa harus menggali dan merusak tanah. Sistem GPR terdiri atas pengirim (transmitter), yaitu antena yang terhubung ke generator sinyal dan bagian penerima (receiver), yaitu antena yang terhubung ke LNA dan ADC yang kemudian terhubung ke unit pengolahan data hasil survey serta display sebagai tampilan output-nya dan post  processing untuk alat bantu mendapatkan informasi mengenai suatu objek. GPR bekerja dengan cara memancarkan gelombang elektromagnetik ke dalam tanah dan menerima sinyal yang dipantulkan oleh objek-objek di bawah permukaan tanah. Sinyal yang diterima kemudian diolah pada bagian signal processing dengan tujuan untuk menghasilkan gambaran kondisi di bawah permukaan tanah yang dapat dengan mudah dibaca dan diinterpretasikan oleh user. Signal processing sendiri terdiri dari beberapa tahap yaitu A-Scan yang meliputi perbaikan sinyal dan pendektesian objek satu dimensi, B-Scan untuk pemrosesan data dua dimensi  dan C-Scan untuk pemrosesan data tiga dimensi. Metode yang digunakan pada pemrosesan B-Scan salah satunya adalah dengan  teknik pemrosesan citra. Dengan pemrosesan citra, data survey B-scan diolah untuk didapatkan informasi mengenai objek. Pada penelitian ini, diterapkan teori gradien garis pada pemrosesan citra B-scan untuk menentukan bentuk dua dimensi dari objek bawah tanah yaitu persegi, segitiga atau lingkaran. 


Sign in / Sign up

Export Citation Format

Share Document