Using ground-penetrating radar to re-evaluate the Chetro Ketl field area in Chaco Canyon, New Mexico

2016 ◽  
Vol 7 ◽  
pp. 238-246 ◽  
Author(s):  
Jennie O. Sturm
2005 ◽  
Vol 24 (7) ◽  
pp. 718-722 ◽  
Author(s):  
Thomas H. Wilson ◽  
Arthur W. Wells ◽  
J. Rodney Diehl ◽  
Grant S. Bromhal ◽  
Duane H. Smith ◽  
...  

2020 ◽  
Author(s):  
thomas urban

<p>Recent field research at White Sands National Park, New Mexico, USA, has used ground-penetrating radar to detect the footprints of Pleistocene humans, mammoths, and ground sloths. The technique has been succesful with a range of antenna frequencies and for detecting footprints of many different sizes. Perhaps more importantly, the method has been shown to successfully detect fooprints that are not visible to the human eye, often with sufficent detail to differntiate species. This work raises an obvious question about whether GPR could be used to detect footprints in a range of other contexts, or whether the circumstances seen at White Sands are unique. </p>


2015 ◽  
Vol 3 (2) ◽  
pp. 124-135 ◽  
Author(s):  
Jennie O. Sturm ◽  
Patricia L. Crown

AbstractGround-penetrating radar (GPR) has become a common method for mapping archaeological sites in the American Southwest. A less tested use for this method is to survey architectural spaces within larger pueblos to map features that may relate to the function, use, and abandonment of a specific room. In Chaco Canyon, GPR was used in a room (Room 28) within Pueblo Bonito prior to excavation to determine the presence and depth of buried features. Comparison with excavation results provides a means to evaluate how well this method mapped features in this small space. Three categories of features within this room, posts/postholes, entryways, and burned materials, were successfully identified in the GPR maps. By comparing this GPR survey with the subsequent excavation, we determined how GPR reflected these architectural features, allowing us to develop a set of expectations for using this method to identify similar features in other interior pueblo rooms.


Geophysics ◽  
1978 ◽  
Vol 43 (7) ◽  
pp. 1441-1448 ◽  
Author(s):  
L. T. Dolphin ◽  
W. B. Beatty ◽  
J. D. Tanzi

Ground‐penetrating radar and resistivity measurements were made on 20–31 March 1977 in support of limited exploration and excavation of Victorio Peak, White Sands Missile Range, New Mexico, by Expeditions Unlimited. The survey by SRI International (formerly Stanford Research Institute) confirms the existence of large caverns beneath the mountain as well as tunnels, fissures, and other features of geophysical interest, pertinent to the legends that a treasure cache was discovered within the peak in 1937. The uniqueness of the radar work reported is a result of lower‐than‐average radio‐frequency attenuation in the peak permitting sounding to depths as great as 400 ft.


2013 ◽  
Vol 10 (4) ◽  
pp. 4063-4097 ◽  
Author(s):  
J. Minet ◽  
N. E. C. Verhoest ◽  
S. Lambot ◽  
M. Vanclooster

Abstract. We analyzed the temporal stability of soil moisture patterns acquired using a proximal ground-penetrating radar (GPR) in a 2.5 ha agricultural field at five different dates over three weeks. The GPR system was mounted on a mobile platform, allowing for real-time mapping of soil moisture with a high spatial resolution (2–5 m). The spatio-temporal soil moisture patterns were in accordance with the meteorological data and with soil moisture measurements from soil core sampling. Time-stable areas showing the field-average moisture could be revealed by two methods: (1) by the computation of temporal stability indicators based on relative differences of soil moisture to the field-average and (2) by the spatial intersection of the areas showing the field-average. Locations where the mean relative difference was below 0.02 m3 m−3 extended up to 10% of the field area whereas the intersection of areas showing the field-average within a tolerance of 0.02 m3 m−3 covered 5% of the field area. Compared to most of the previous studies about temporal stability of soil moisture, time-stable areas and their spatial patterns could be revealed instead of single point locations, owing to the advanced GPR method for real-time mapping. It is believed that determining spatially coherent time-stable areas is more informative rather than determining time-stable points. Other acquisitions over larger time periods would be necessary to assert the robustness of the time-stable areas.


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


2017 ◽  
Vol 3 (1) ◽  
pp. 73-83
Author(s):  
Rahmayati Alindra ◽  
Heroe Wijanto ◽  
Koredianto Usman

Ground Penetrating Radar (GPR) adalah salah satu jenis radar yang digunakan untuk menyelidiki kondisi di bawah permukaan tanah tanpa harus menggali dan merusak tanah. Sistem GPR terdiri atas pengirim (transmitter), yaitu antena yang terhubung ke generator sinyal dan bagian penerima (receiver), yaitu antena yang terhubung ke LNA dan ADC yang kemudian terhubung ke unit pengolahan data hasil survey serta display sebagai tampilan output-nya dan post  processing untuk alat bantu mendapatkan informasi mengenai suatu objek. GPR bekerja dengan cara memancarkan gelombang elektromagnetik ke dalam tanah dan menerima sinyal yang dipantulkan oleh objek-objek di bawah permukaan tanah. Sinyal yang diterima kemudian diolah pada bagian signal processing dengan tujuan untuk menghasilkan gambaran kondisi di bawah permukaan tanah yang dapat dengan mudah dibaca dan diinterpretasikan oleh user. Signal processing sendiri terdiri dari beberapa tahap yaitu A-Scan yang meliputi perbaikan sinyal dan pendektesian objek satu dimensi, B-Scan untuk pemrosesan data dua dimensi  dan C-Scan untuk pemrosesan data tiga dimensi. Metode yang digunakan pada pemrosesan B-Scan salah satunya adalah dengan  teknik pemrosesan citra. Dengan pemrosesan citra, data survey B-scan diolah untuk didapatkan informasi mengenai objek. Pada penelitian ini, diterapkan teori gradien garis pada pemrosesan citra B-scan untuk menentukan bentuk dua dimensi dari objek bawah tanah yaitu persegi, segitiga atau lingkaran. 


Sign in / Sign up

Export Citation Format

Share Document