Image gathers of SV-waves in homogeneous and factorized VTI media

Geophysics ◽  
2005 ◽  
Vol 70 (5) ◽  
pp. D55-D64 ◽  
Author(s):  
Ramzy M. Al-Zayer ◽  
Ilya Tsvankin

Reflection moveout of SV-waves in transversely isotropic media with a vertical symmetry axis (VTI media) can provide valuable information about the model parameters and help to overcome the ambiguities in the inversion of P-wave data. Here, to develop a foundation for shear-wave migration velocity analysis, we study SV-wave image gathers obtained after prestack depth migration. The key issue, addressed using both approximate analytic results and Kirchhoff migration of synthetic data, is whether long-spread SV data can constrain the shear-wave vertical velocity [Formula: see text] and the depth scale of VTI models. For homogeneous media, the residual moveout of horizontal SV events on image gathers is close to hyperbolic and depends just on the NMO velocity [Formula: see text] out to offset-to-depth ratios of about 1.7. Because [Formula: see text] differs from [Formula: see text], flattening moderate-spread gathers of SV-waves does not ensure the correct depth of the migrated events. The residual moveout rapidly becomes nonhyperbolic as the offset-to-depth ratio approaches two, with the migrated depths at long offsets strongly influenced by the SV-wave anisotropy parameter σ. Although the combination of [Formula: see text] and σ is sufficient to constrain the vertical velocity [Formula: see text] and reflector depth, the tradeoff between σ and the Thomsen parameter ε on long-spread gathers causes errors in time-to-depth conversion. The residual moveout of dipping SV events is also controlled by the parameters [Formula: see text], σ, and ε, but in the presence of dip, the contributions of both σ and ε are significant even at small offsets. For factorized v(z) VTI media with a constant SV-wave vertical-velocity gradient [Formula: see text], flattening of horizontal events for a range of depths requires the correct NMO velocity at the surface, the gradient [Formula: see text], and, for long offsets, the parameters σ and ε. On the whole, the nonnegligible uncertainty in the estimation of reflector depth from SV-wave moveout highlights the need to combine P- and SV-wave data in migration velocity analysis for VTI media.

Geophysics ◽  
2004 ◽  
Vol 69 (3) ◽  
pp. 708-718 ◽  
Author(s):  
Debashish Sarkar ◽  
Ilya Tsvankin

One of the main challenges in anisotropic velocity analysis and imaging is simultaneous estimation of velocity gradients and anisotropic parameters from reflection data. Approximating the subsurface by a factorized VTI (transversely isotropic with a vertical symmetry axis) medium provides a convenient way of building vertically and laterally heterogeneous anisotropic models for prestack depthmigration. The algorithm for P‐wave migration velocity analysis (MVA) introduced here is designed for models composed of factorized VTI layers or blocks with constant vertical and lateral gradients in the vertical velocity VP0. The anisotropic MVA method is implemented as an iterative two‐step procedure that includes prestack depth migration (imaging step) followed by an update of the medium parameters (velocity‐analysis step). The residual moveout of the migrated events, which is minimized during the parameter updates, is described by a nonhyperbolic equation whose coefficients are determined by 2D semblance scanning. For piecewise‐factorized VTI media without significant dips in the overburden, the residual moveout of P‐wave events in image gathers is governed by four effective quantities in each block: (1) the normal‐moveout velocity Vnmo at a certain point within the block, (2) the vertical velocity gradient kz, (3) the combination kx[Formula: see text] of the lateral velocity gradient kx and the anisotropic parameter δ, and (4) the anellipticity parameter η. We show that all four parameters can be estimated from the residual moveout for at least two reflectors within a block sufficiently separated in depth. Inversion for the parameter η also requires using either long‐spread data (with the maximum offset‐to‐depth ratio no less than two) from horizontal interfaces or reflections from dipping interfaces. To find the depth scale of the section and build a model for prestack depth migration using the MVA results, the vertical velocity VP0 needs to be specified for at least a single point in each block. When no borehole information about VP0 is available, a well‐focused image can often be obtained by assuming that the vertical‐velocity field is continuous across layer boundaries. A synthetic test for a three‐layer model with a syncline structure confirms the accuracy of our MVA algorithm in estimating the interval parameters Vnmo, kz, kx, and η and illustrates the influence of errors in the vertical velocity on the image quality.


Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 897-903 ◽  
Author(s):  
Yves Le Stunff ◽  
Vladimir Grechka ◽  
Ilya Tsvankin

The main difficulties in anisotropic velocity analysis and inversion using surface seismic data are associated with the multiparameter nature of the problem and inherent trade‐offs between the model parameters. For the most common anisotropic model, transverse isotropy with a vertical symmetry axis (VTI media), P-wave kinematic signatures are controlled by the vertical velocity V0 and the anisotropic parameters ε and δ. However, only two combinations of these parameters—NMO velocity from a horizontal reflector Vnmo(0) and the anellipticity coefficient η—can be determined from P-wave reflection traveltimes if the medium above the reflector is laterally homogeneous. While Vnmo(0) and η are sufficient for time‐domain imaging in VTI media, they cannot be used to resolve the vertical velocity and build velocity models needed for depth migration. Here, we demonstrate that P-wave reflection data can be inverted for all three relevant VTI parameters (V0, ε and δ) if the model contains nonhorizontal intermediate interfaces. Using anisotropic reflection tomography, we carry out parameter estimation for a two‐layer medium with a curved intermediate interface and reconstruct the correct anisotropic depth model. To explain the success of this inversion procedure, we present an analytic study of reflection traveltimes for this model and show that the information about the vertical velocity and reflector depth was contained in the reflected rays which crossed the dipping intermediate interface. The results of this work are especially encouraging because the need for depth imaging (such as prestack depth migration) arises mostly in laterally heterogeneous media. Still, we restricted this study to a relatively simple model and constrained the inversion by assuming that one of the layers is isotropic. In general, although lateral heterogeneity does create a dependence of P-wave reflection traveltimes on the vertical velocity, there is no guarantee that for more complicated models all anisotropic parameters can be resolved in a unique fashion.


Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 2016-2025 ◽  
Author(s):  
Debashish Sarkar ◽  
Ilya Tsvankin

Because events in image gathers generated after prestack depth migration are sensitive to the velocity field, they are often used in migration velocity analysis for isotropic media. Here, we present an analytic and numerical study of P‐wave image gathers in transversely isotropic media with a vertical symmetry axis (VTI) and establish the conditions for flattening such events and positioning them at the true reflector depth. Application of the weak‐anisotropy approximation leads to concise expressions for reflections in image gathers from homogeneous and factorized v(z) media in terms of the VTI parameters and the vertical velocity gradient kz. Flattening events in image gathers for any reflector dip requires accurate values of the zero‐dip NMO velocity at the surface [Vnmo (z = 0)], the gradient kz, and the anellipticity coefficient η. For a fixed error in Vnmo and kz, the magnitude of residual moveout of events in image gathers decreases with dip, while the moveout caused by an error in η initially increases for moderate dips but then decreases as dips approach 90°. Flat events in image gathers in VTI media, however, do not guarantee the correct depth scale of the model because reflector depth depends on the vertical migration velocity. For factorized v(x, z) media with a linear velocity variation in both the x‐ and z‐directions, the moveout on image gathers is controlled by Vnmo (x = z = 0), kz, η, and a combination of the horizontal velocity gradient kx and the Thomsen parameter δ (specifically, kx[Formula: see text]). If too large a value of any of these four quantities is used in migration, reflections in the image gathers curve downward (i.e., they are undercorrected; the inferred depth increases with offset), while a negative error results in overcorrection. Lateral heterogeneity tends to increase the sensitivity of moveout of events in image gathers to the parameter η, and errors in η may lead to measurable residual moveout of horizontal events in v(x, z) media even for offset‐to‐depth ratios close to unity. These results provide a basis for extending to VTI media conventional velocity analysis methods operating with image gathers. Although P‐wave traveltimes alone cannot be used to separate anisotropy from lateral heterogeneity (i.e., kx is coupled to δ), moveout of events in image gathers does constrain the vertical gradient kz. Hence, it may be possible to build VTI velocity models in depth by supplementing reflection data with minimal a priori information, such as the vertical velocity at the top of the factorized VTI layer.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. U87-U96 ◽  
Author(s):  
Mamoru Takanashi ◽  
Ilya Tsvankin

One of the most serious problems in anisotropic velocity analysis is the trade-off between anisotropy and lateral heterogeneity, especially if velocity varies on a scale smaller than the maximum offset. We have developed a P-wave MVA (migration velocity analysis) algorithm for transversely isotropic (TI) models that include layers with small-scale lateral heterogeneity. Each layer is described by constant Thomsen parameters [Formula: see text] and [Formula: see text] and the symmetry-direction velocity [Formula: see text] that varies as a quadratic function of the distance along the layer boundaries. For tilted TI media (TTI), the symmetry axis is taken orthogonal to the reflectors. We analyzed the influence of lateral heterogeneity on image gathers obtained after prestack depth migration and found that quadratic lateral velocity variation in the overburden can significantly distort the moveout of the target reflection. Consequently, medium parameters beneath the heterogeneous layer(s) are estimated with substantial error, even when borehole information (e.g., check shots or sonic logs) is available. Because residual moveout in the image gathers is highly sensitive to lateral heterogeneity in the overburden, our algorithm simultaneously inverts for the interval parameters of all layers. Synthetic tests for models with a gently dipping overburden demonstrate that if the vertical profile of the symmetry-direction velocity [Formula: see text] is known at one location, the algorithm can reconstruct the other relevant parameters of TI models. The proposed approach helps increase the robustness of anisotropic velocity model-building and enhance image quality in the presence of small-scale lateral heterogeneity in the overburden.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. WC123-WC135 ◽  
Author(s):  
Pengfei Cai ◽  
Ilya Tsvankin

Combining PP-waves with mode-converted PS reflections in migration velocity analysis (MVA) can help build more accurate VTI (transversely isotropic with a vertical symmetry axis) velocity models. To avoid problems caused by the moveout asymmetry of PS-waves and take advantage of efficient MVA algorithms designed for pure modes, here we generate pure SS-reflections from PP and PS data using the [Formula: see text] method. Then the residual moveout in both PP and SS common-image gathers is minimized during iterative velocity updates. The model is divided into square cells, and the VTI parameters [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] are defined at each grid point. The objective function also includes the differences between the migrated depths of the same reflectors on the PP and SS sections. Synthetic examples confirm that 2D MVA of PP- and PS-waves may be able to resolve all four relevant parameters of VTI media if reflectors with at least two distinct dips are available. The algorithm is also successfully applied to a 2D line from 3D ocean-bottom seismic data acquired at Volve field in the North Sea. After the anisotropic velocity model has been estimated, accurate depth images can be obtained by migrating the recorded PP and PS data.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. C65-C79 ◽  
Author(s):  
Ernesto V. Oropeza ◽  
George A. McMechan

We have developed a common-reflection-point (CRP)-based kinematic migration velocity analysis for 2D P-wave reflection data to estimate the four transversely isotropic (TI) parameters [Formula: see text], [Formula: see text], and [Formula: see text], and the tilt angle [Formula: see text] of the symmetry axis in a TI medium. In each iteration, the tomographic parameter was updated alternately with prestack anisotropic ray-based migration. Iterations initially used layer stripping to reduce the number of degrees of freedom; after convergence was reached, a couple of more iterations over all parameters and all CRPs ensured global interlayer coupling and parameter interaction. The TI symmetry axis orientation was constrained to be locally perpendicular to the reflectors. The [Formula: see text] dominated the inversion, and so it was weighted less than [Formula: see text] and [Formula: see text] in the parameter updates. Estimates of [Formula: see text] and [Formula: see text] were influenced if the error in [Formula: see text] was [Formula: see text]; estimates of [Formula: see text] were also influenced if the error in [Formula: see text] was [Formula: see text]. Examples included data for a simple model with a homogeneous TI layer whose dips allowed recovery of all anisotropy parameters from noise-free data, and a more realistic model (the BP tilted transversely isotropic (TTI) model) for which only [Formula: see text], [Formula: see text], and [Formula: see text] were recoverable. The adequacy of the traveltimes predicted by the inverted anisotropic models was tested by comparing migrated images and common image gathers, with those produced using the known velocity models.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. S327-S340 ◽  
Author(s):  
Bowen Guo ◽  
Gerard T. Schuster

Wave-equation migration velocity analysis (WEMVA) based on subsurface-offset, angle domain, or time-lag common-image gathers (CIGs) requires significant computational and memory resources because it computes higher dimensional migration images in the extended image domain. To mitigate this problem, we have developed a WEMVA method using plane-wave CIGs. Plane-wave CIGs reduce computational cost and memory storage because they are directly calculated from prestack plane-wave migration and the number of plane waves is often much smaller than the number of shots. In the case of an inaccurate migration velocity, the moveout of plane-wave CIGs is automatically picked by a semblance analysis method, which is then linked to the migration velocity update by a connective function. Numerical tests on two synthetic data sets and a field data set validate the efficiency and effectiveness of this method.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. S35-S46 ◽  
Author(s):  
Francesco Perrone ◽  
Paul Sava ◽  
Clara Andreoletti ◽  
Nicola Bienati

Seismic imaging produces images of contrasts in physical parameters in the subsurface, e.g., velocity or impedance. To build such images, a background model describing the wave kinematics in the earth is necessary. In practice, the structural image and background velocity model are unknown and have to be estimated from the acquired data. Migration velocity analysis deals with estimation of the background model in the framework of seismic migration and relies on two main elements: data redundancy and invariance of the structures with respect to different seismic experiments. Because all the experiments probe the same model, the reflectors must be invariant in suitable domains (e.g., shots or reflection angle); the semblance principle is the tool used to measure the invariance of a set of multiple images. We measure the similarity of the structural features between pairs of single-shot migrated images obtained from adjacent experiments. By using the estimated warping vector field between two migrated images, we construct an image perturbation which describes the difference in reflectivity observed by two shots. We derive an expression for the image perturbation that drives a migration velocity analysis procedure based on a linearization of the wave-equation with respect to the model parameters. Synthetic 2D examples show promising results in retrieving errors in the velocity model. This methodology can be directly applied to 3D.


Sign in / Sign up

Export Citation Format

Share Document