Virtual shear source makes shear waves with air guns

Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. A7-A11 ◽  
Author(s):  
Andrey Bakulin ◽  
Albena Mateeva ◽  
Rodney Calvert ◽  
Patsy Jorgensen ◽  
Jorge Lopez

We demonstrate a novel application of the virtual source method to create shear-wave sources at the location of buried geophones. These virtual downhole sources excite shear waves with a different radiation pattern than known sources. They can be useful in various shear-wave applications. Here we focus on the virtual shear check shot to generate accurate shear-velocity profiles in offshore environments using typical acquisition for marine walkaway vertical seismic profiling (VSP). The virtual source method is applied to walkaway VSP data to obtain new traces resembling seismograms acquired with downhole seismic sources at geophone locations, thus bypassing any overburden complexity. The virtual sources can be synthesized to radiate predominantly shear waves by collecting converted-wave energy scattered throughout the overburden. We illustrate the concept in a synthetic layered model and demonstrate the method by estimating accurate P- and S-wave velocity profiles below salt using a walkaway VSP from the deepwater Gulf of Mexico.

Geophysics ◽  
1991 ◽  
Vol 56 (9) ◽  
pp. 1349-1364 ◽  
Author(s):  
D. F. Winterstein ◽  
M. A. Meadows

Shear‐wave [Formula: see text]-wave) polarization azimuths, although consistent over large depth intervals, changed abruptly and by large amount of various depths in nine-component vertical seismic profiling (VSP) data from the Cymric and Railroad Gap oil fields of the southwest San Joaquin basin. A simple layer‐stripping technique made it possible to follow the polarization changes and determine the [Formula: see text]-wave birefringence over successive depth intervals. Because the birefringence and polarization azimuth are related to in‐situ stresses and fracture, information from such analysis could be important for reservoir development. Near offset VSP data from Cymrix indicated that the subsurface could be appproximated roughly as two anisotropic layers. The upper layer, from the surface to 800 ft (240 m), had vertical [Formula: see text]-wave birefringence as large was about 6 percent down to 1300 ft (400 m). In the upper layer the polarization azimuth of the fast [Formula: see text]-wave was N 60°E, while in the lower layer it was about N 10°E. Refinement of the layer stripping showed that neither layer was anisotropically homogenous, and both could be subdivided into thinner layers. Near offset [Formula: see text]-wave VSP data from the Railroad Gap well also show high birefringence near the surface and less birefringence deeper. In the uppermost layer, which extends down to 1300 ft (400 m), the [Formula: see text]-wave birefringence was 9 percent, and the lag between the fast and slow [Formula: see text]-waves exceeded 60 ms at the bottom of the layer. Seven layers in all were needed to accommodate [Formula: see text]-wave polarization changes. The most reliable azimuth angle determination as judged from the data consistency were those of the uppermost layer, at N 46°E, and those from depths 2900–3700 ft (880–1130 m) and 3900–5300 ft (1190–1610 m), at N 16°E and N 15°W, respectively. Over those intervals the scatter of calculated azimuths about the mean was typically less than 4 degrees. The largest birefringence at both locations occurred in the same formation, the Pliocene Tulare sands and Pebble Conglomerate. In those formations the azimuth of the fast [Formula: see text]-wave polarization was roughly orthogonal to the southwest. In the deeper Antelope shale, [Formula: see text]-wave polarization directions in both areas were close to 45 degrees from the fault. Confidence in the layer stripping procedure was bolstered by major improvement in data quality that resulted from stripping. Before stripping, wavelets of the two [Formula: see text]-waves sometimes had very different waveforms, and it was often impossible to come close to diagonalizing the 2 × 2 S‐wave data matrix by rotating sources and receivers by the same angle. After stripping, wavelets were more similar in shape, and the S‐wave matrix was more nearly diagonalizable by rotating with a single angle.


Geophysics ◽  
1992 ◽  
Vol 57 (4) ◽  
pp. 643-646
Author(s):  
Hans A. K. Edelmann

If shear waves are to be recorded, all other types of waves (including P waves) have to be regarded as noise. All data processing applied later is limited in its success, not so much by the character of the signal, but by the character of the noise superimposed on the signal. Therefore an optimum method for simultaneous P‐ and S‐wave recording does not exist per se. All efforts made in the field that help to enhance the relatively weak S‐wave signal enhance the possibility of a more detailed interpretation such as polarization analysis. In the course of shear‐wave investigations over a period of more than ten years, simultaneous P‐ and SV‐wave recording has yielded fairly good results for velocity ratio determination, but has never produced satisfying results for polarization analysis because of the interfering P‐wave events. When generating pure SH‐waves, however, P‐wave arrival amplitudes in a shot record can, under favorable conditions, be kept well below the SH‐wave amplitude (−40 dB). Through additional processing, a ratio of P‐ to SH‐signal amplitude of −60 dB can be reached. The improvement achieved by making separate shear‐wave recordings, obviously, must be weighed against the additional costs caused by these recordings.


Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. N1-N10
Author(s):  
Keshan Zou

Analyzing the Aki-Richards equation for converted waves, I found that it is possible to decouple the effect of density contrast from that of shear velocity contrast. The two terms were mixed when the P-wave incident angle was less than 30°, but they started to separate at a middle angle range (approximately 40°). The term related to S-wave velocity contrast reached zero at an incident angle around 60°. However, the other term, which was related to the density contrast, did not reverse polarity until 90°. Furthermore, this density term reached almost the maximum (magnitude) around 60°. Based on those characteristics, I designed a new method called “S-Zero Stack” to capture the density contrast reliably at the subsurface interface without going to inversion. S-Zero Stack captured subsurface density anomalies using a special stacking method. It is simple but robust, even when there is noise in the common-conversion-point gathers. Combined with the traditional P-wave amplitude-variation-with-offset technique, S-Zero Stack of PS-waves may help discriminate commercial gas from fizz in gas sand and could be a useful tool in shale gas exploration to locate lower-density anomalies (sweet spots).


Geophysics ◽  
1976 ◽  
Vol 41 (5) ◽  
pp. 985-996 ◽  
Author(s):  
Edwin L. Hamilton

The objectives of this paper are to review and study selected measurements of the velocity of shear waves at various depths in some principal types of unlithified, water‐saturated sediments, and to discuss probable variations of shear velocity as a function of pressure and depth in the sea floor. Because of the lack of data for the full range of marine sediments, data from measurements on land were used, and the study was confined to the two “end‐member” sediment types (sand and silt‐clays) and turbidites. The shear velocity data in sands included 29 selected in‐situ measurements at depths to 12 m. The regression equation for these data is: [Formula: see text], where [Formula: see text] is shear‐wave velocity in m/sec, and D is depth in meters. The data from field and laboratory studies indicate that shear‐wave velocity is proportional to the 1/3 to 1/6 power of pressure or depth in sands; that the 1/6 power is not reached until very high pressures are applied; and that in most sand bodies the velocity of shear waves is proportional to the 3/10 to 1/4 power of depth or pressure. The use of a depth exponent of 0.25 is recommended for prediction of shear velocity versus depth in sands. The shear velocity data in silt‐clays and turbidites include 47 selected in‐situ measurements at depths to 650 m. Three linear equations are used to characterize the data. The equation for the 0 to 40 m interval [Formula: see text] indicates the gradient [Formula: see text] to be 4 to 5 times greater than is the compressional velocity gradient in this interval in comparable sediments. At deeper depths, shear velocity gradients are [Formula: see text] from 40 to 120 m, and [Formula: see text] from 120 to 650 m. These deeper gradients are comparable to those of compressional wave velocities. These shear velocity gradients can be used as a basis for predicting shear velocity versus depth.


1991 ◽  
Vol 81 (4) ◽  
pp. 1057-1080 ◽  
Author(s):  
Richard C. Aster ◽  
Peter M. Shearer

Abstract Two borehole seismometer arrays (KNW-BH and PFO-BH) have been established in the Southern California Batholith region of the San Jacinto Fault zone by the U.S. Geological Survey. The sites are within 0.4 km of Anza network surface stations and have three-component seismometers deployed at 300 m depth, at 150 m depth, and at the surface. Downhole horizontal seismometers can be oriented to an accuracy of about 5° using regional and near-regional initial P-wave particle motions. Shear waves recorded downhole at the KNW-BH indicate that the strong alignment of initial S-wave particle motions previously observed at the (surface) KNW Anza site (KNW-AZ) is not generated in the near-surface weathered layer. The KNW-BH surface instrument, which sits atop a highly weathered zone, displays a significantly different (≈ 20°) initial S-wave polarization direction from that observed downhole and at KNW-AZ, which is bolted to an outcrop. Although downhole initial shear-wave particle motion directions are consistent with a shear-wave splitting hypothesis, observations of orthogonally polarized slow shear waves are generally elusive, even in seismograms recorded at 300 m. A cross-correlation measure of the apparent relative velocities of Sfast and Sslow horizontally polarized S waves suggests shallow shear-wave anisotropy, consistent with the observed initial S-wave particle motion direction, of 2.3 ± 1.7 per cent between 300 and 150 m and 7.5 ± 3.5 per cent between 150 and 0 m.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1273-1284 ◽  
Author(s):  
Bradley J. Carr ◽  
Zoltan Hajnal ◽  
Arnfinn Prugger

Within a high‐resolution shallow reflection survey program in Saskatchewan, Canada, S-waves were produced using a single seismo‐electric blasting cap and were found to be distinguishable from surface wave phases. The local glacial deposits have average velocities of 450 m/s. [Formula: see text] ratios average 3.6 in these sequences, but they vary laterally, according to the velocity analyses done in two boreholes drilled along the seismic line. Vertical resolution for S-wave reflections are 0.75 m [in the vertical seismic profiling (VSP) data] and 1.5 m (in the CDP data). Yet, the S-wave CDP results are still better than corresponding P-wave data, which had a vertical resolution of 2.6 m. S-wave anisotropy is inferred in the glacial deposits on the basis of particle motion analysis and interpretations of S-wave splitting. However, the amount of observed splitting is small (∼2–6 ms over 5–10 m) and could go undetected for seismic surveys with larger sampling intervals. VSPs indicate that S-wave reflectivity is caused by both distinct and subtle lithologic changes (e.g., clay/sand contacts or changes in clay percentage within a particular till unit) and changes in bulk porosity. Migrated S-wave sections from line 1 and line 2 image reflections from sand layers within the tills as well as the first “bedrock” sequence (known as the Judith River Formation). Shear wave images are not only feasible in unconsolidated materials, but provide additional information about structural relationships within these till units.


1968 ◽  
Vol 8 (04) ◽  
pp. 389-404 ◽  
Author(s):  
A.L. Podio ◽  
A.R. Gregory ◽  
K.E. Gray

Abstract Dynamic elastic properties of dry and water-saturated Green River shale samples were computed from compressional and shear-wave velocity measurements. P- and S-wave velocity measurements were made in three mutually perpendicular directions with respect to the bedding planes. Measurements were also made in several different directions by varying the angle between the bedding planes and the direction of propagation of the wave for angles of 0, 30, 45, 60 and 90 degrees. The oriented samples were subjected to both confining pressure and axial loads, in excess of the confining stress, in the direction of Propagation. In general, P- and S-wave velocities increased with increasing stress levels, with a corresponding increase in Young's modulus. Water saturation caused the P-wave velocity to increase and the S-wave velocity to decrease. Elastic moduli decreased upon saturation, except for Poisson's ratio, which increased, indicating some degree of weakening of the material. The samples showed a moderate degree of anisotropy; this was to be expected from the laminated nature and shallow occurence of Green River shale. Introduction This paper presents some results of an experimental determination of the elastic coefficients of anisotropic materials (in particular, finely layered rocks and minerals such as Green River shale) from measurements of dilatational and shear-ultrasonic-wave velocities. Ultrasonic techniques have been used extensively in nondestructive testing. Several methods have been proposed by McSkimmin, and some of these have been used successfully to measure ultrasonic velocities in rocks. Hughes and Cross, Wyllie et al., and Birch, developed pulse first-arrival techniques for the measurement of dilatational and shear velocities. Williams and Lamb used the method of cancellation of a traveling wave, which was later modified by Myers et al. and perfected by McSkimmin. Although this method is highly accurate, it has not been used as widely as the pulse-transmission methods recently reported by Jamieson and Hoskins, King, and Mattaboni and Schreiber. It has been common practice to use some form of crystal transducers, either quartz or ceramic, that has been cut or polarized in different directions in order to generate either compressional or shear waves. However, accurate determination of shear wave velocities has been difficult due to problems that arise in obtaining a pure shear wave from cross-polarized crystals, which usually also generate a small amount of compressional energy. As reported by Gregory, this energy can be seen as a long precursor preceding the sharp break of the shear first arrival. The need for generating pure shear waves led to interest in mode-conversion techniques, which are based upon conversion of the mode of vibration through wave reflection or refraction at a discontinuity. Arenberg showed that for certain materials and for certain angles of incidence it is possible to generate pure shear modes by reflection at a boundary. Jamieson and Hoskins used a pyrex glass-air interface for generating pure shear waves, and King used this method successfully for measuring shear-wave velocities in rocks. Gregory arrived at a similar result by refraction of a wave at an aluminum-oil interface. A plane compressional wave, traveling in the oil phase, is incident on the aluminum at an angle larger than the critical angle for compressional waves, and thereby generates a purely transverse, plane-polarized wave in the aluminum. During the last few years methods have been developed that allow the simultaneous determination of shear and compressional velocities in solids. SPEJ P. 389ˆ


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Paritosh Singh ◽  
Thomas Davis

The Upper Morrow sandstones in the western Anadarko Basin have been prolific oil producers for more than five decades. Detection of Morrow sandstones is a major problem in the exploration of new fields and the characterization of existing fields because they are often very thin and laterally discontinuous. Until recently compressional wave data have been the primary resource for mapping the lateral extent of Morrow sandstones. The success with compressional wave datasets is limited because the acoustic impedance contrast between the reservoir sandstones and the encasing shales is small. Here, we have performed full waveform modeling study to understand the Morrow sandstone signatures on compressional wave (P-wave), converted-wave (PS-wave) and pure shear wave (S-wave) gathers. The contrast in rigidity between the Morrow sandstone and surrounding shale causes a strong seismic expression on the S-wave data. Morrow sandstone shows a distinct high amplitude event in pure S-wave modeled gathers as compared to the weaker P- and PS-wave events. Modeling also helps in understanding the adverse effect of interbed multiples (due to shallow high velocity anhydrite layers) and side lobe interference effects at the Morrow level. Modeling tied with the field data demonstrates that S-waves are more robust than P-waves in detecting the Morrow sandstone reservoirs.


Sign in / Sign up

Export Citation Format

Share Document