Shear‐wave studies in glacial till

Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1273-1284 ◽  
Author(s):  
Bradley J. Carr ◽  
Zoltan Hajnal ◽  
Arnfinn Prugger

Within a high‐resolution shallow reflection survey program in Saskatchewan, Canada, S-waves were produced using a single seismo‐electric blasting cap and were found to be distinguishable from surface wave phases. The local glacial deposits have average velocities of 450 m/s. [Formula: see text] ratios average 3.6 in these sequences, but they vary laterally, according to the velocity analyses done in two boreholes drilled along the seismic line. Vertical resolution for S-wave reflections are 0.75 m [in the vertical seismic profiling (VSP) data] and 1.5 m (in the CDP data). Yet, the S-wave CDP results are still better than corresponding P-wave data, which had a vertical resolution of 2.6 m. S-wave anisotropy is inferred in the glacial deposits on the basis of particle motion analysis and interpretations of S-wave splitting. However, the amount of observed splitting is small (∼2–6 ms over 5–10 m) and could go undetected for seismic surveys with larger sampling intervals. VSPs indicate that S-wave reflectivity is caused by both distinct and subtle lithologic changes (e.g., clay/sand contacts or changes in clay percentage within a particular till unit) and changes in bulk porosity. Migrated S-wave sections from line 1 and line 2 image reflections from sand layers within the tills as well as the first “bedrock” sequence (known as the Judith River Formation). Shear wave images are not only feasible in unconsolidated materials, but provide additional information about structural relationships within these till units.

Geophysics ◽  
1988 ◽  
Vol 53 (5) ◽  
pp. 659-667 ◽  
Author(s):  
S. T. Chen

Laboratory measurements have verified a novel technique for direct shear‐wave logging in hard and soft formations with a dipole source, as recently suggested in theoretical studies. Conventional monopole logging tools are not capable of measuring shear waves directly. In particular, no S waves are recorded in a soft formation with a conventional monopole sonic tool because there are no critically refracted S rays when the S-wave velocity of the rock is less than the acoustic velocity of the borehole fluid. The present studies were conducted in the laboratory with scale models representative of sonic logging conditions in the field. We have used a concrete model to represent hard formations and a plastic model to simulate a soft formation. The dipole source, operating at frequencies lower than those conventionally used in logging, substantially suppressed the P wave and excited a wave train whose first arrival traveled at the S-wave velocity. As a result, one can use a dipole source to log S-wave velocity directly on‐line by picking the first arrival of the full wave train, in a process similar to that used in conventional P-wave logging. Laboratory experiments with a conventional monopole source in a soft formation did not produce S waves. However, the S-wave velocity was accurately estimated by using Biot’s theory, which required measuring the Stoneley‐wave velocity and knowing other borehole parameters.


Geophysics ◽  
1999 ◽  
Vol 64 (3) ◽  
pp. 970-980 ◽  
Author(s):  
Bradley J. Carr ◽  
Zoltan Hajnal

Fundamental reflectivity properties are established within the glacial deposits of central Saskatchewan, Canada. Multicomponent vertical seismic profile (VSP) data collected in three shallow boreholes are used to obtain detailed acoustic property information within the first 80 m of the near‐surface strata. The integration of both P- and S-wave VSP data, in conjunction with other borehole geophysics, provided a unique opportunity to obtain in‐situ seismic reflection response properties in layered clay and sand tills. P- and S-wave interval velocity profiles, in conjunction with P- and S-wave VSP reflectivities are analyzed to provide insight into seismic wavefield behavior within ∼80 m of the surface. In general, shear wave energy identifies more reflective intervals than the P-wave energy because of better vertical resolution for S-wave energy (0.75 m) compared to P-wave energy (2.3 m) based on quarter wavelength criterion. For these saturated, unconsolidated glacial deposits, more details about the lithologic constituents and in‐situ porosity are detectable from the S-wave reflectivity, but P-wave reflections provide a good technique for mapping the bulk changes. The principal cause of seismic reflectivity is the presence and/or amount of sand, and the degree of fluid‐filled porosity within the investigated formations.


Geophysics ◽  
1990 ◽  
Vol 55 (6) ◽  
pp. 646-659 ◽  
Author(s):  
C. Frasier ◽  
D. Winterstein

In 1980 Chevron recorded a three‐component seismic line using vertical (V) and transverse (T) motion vibrators over the Putah sink gas field near Davis, California. The purpose was to record the total vector motion of the various reflection types excited by the two sources, with emphasis on converted P‐S reflections. Analysis of the conventional reflection data agreed with results from the Conoco Shear Wave Group Shoot of 1977–1978. For example, the P‐P wave section had gas‐sand bright spots which were absent in the S‐S wave section. Shot profiles from the V vibrators showed strong P‐S converted wave events on the horizontal radial component (R) as expected. To our surprise, shot records from the T vibrators showed S‐P converted wave events on the V component, with low amplitudes but high signal‐to‐noise (S/N) ratios. These S‐P events were likely products of split S‐waves generated in anisotropic subsurface media. Components of these downgoing waves in the plane of incidence were converted to P‐waves on reflection and arrived at receivers in a low‐noise time window ahead of the S‐S waves. The two types of converted waves (P‐S and S‐P) were first stacked by common midpoint (CMP). The unexpected S‐P section was lower in true amplitude but much higher in S/N ratio than the P‐S section. The Winters gas‐sand bright spot was missing on the converted wave sections, mimicking the S‐S reflectivity as expected. CRP gathers were formed by rebinning data by a simple ray‐tracing formula based on the asymmetry of raypaths. CRP stacking improved P‐S and S‐P event resolution relative to CMP stacking and laterally aligned structural features with their counterparts on P and S sections. Thus, the unexpected S‐P data provided us with an extra check for our converted wave data processing.


2007 ◽  
Vol 4 (3) ◽  
pp. 173-182 ◽  
Author(s):  
Liu Yang ◽  
Zhang Qinghong ◽  
Bao Leiying ◽  
Wei Xiucheng
Keyword(s):  
P Wave ◽  
S Waves ◽  

2022 ◽  
Vol 41 (1) ◽  
pp. 47-53
Author(s):  
Zhiwen Deng ◽  
Rui Zhang ◽  
Liang Gou ◽  
Shaohua Zhang ◽  
Yuanyuan Yue ◽  
...  

The formation containing shallow gas clouds poses a major challenge for conventional P-wave seismic surveys in the Sanhu area, Qaidam Basin, west China, as it dramatically attenuates seismic P-waves, resulting in high uncertainty in the subsurface structure and complexity in reservoir characterization. To address this issue, we proposed a workflow of direct shear-wave seismic (S-S) surveys. This is because the shear wave is not significantly affected by the pore fluid. Our workflow includes acquisition, processing, and interpretation in calibration with conventional P-wave seismic data to obtain improved subsurface structure images and reservoir characterization. To procure a good S-wave seismic image, several key techniques were applied: (1) a newly developed S-wave vibrator, one of the most powerful such vibrators in the world, was used to send a strong S-wave into the subsurface; (2) the acquired 9C S-S data sets initially were rotated into SH-SH and SV-SV components and subsequently were rotated into fast and slow S-wave components; and (3) a surface-wave inversion technique was applied to obtain the near-surface shear-wave velocity, used for static correction. As expected, the S-wave data were not affected by the gas clouds. This allowed us to map the subsurface structures with stronger confidence than with the P-wave data. Such S-wave data materialize into similar frequency spectra as P-wave data with a better signal-to-noise ratio. Seismic attributes were also applied to the S-wave data sets. This resulted in clearly visible geologic features that were invisible in the P-wave data.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D283-D291 ◽  
Author(s):  
Peng Liu ◽  
Wenxiao Qiao ◽  
Xiaohua Che ◽  
Xiaodong Ju ◽  
Junqiang Lu ◽  
...  

We have developed a new 3D acoustic logging tool (3DAC). To examine the azimuthal resolution of 3DAC, we have evaluated a 3D finite-difference time-domain model to simulate a case in which the borehole penetrated a rock formation boundary when the tool worked at the azimuthal-transmitting-azimuthal-receiving mode. The results indicated that there were two types of P-waves with different slowness in waveforms: the P-wave of the harder rock (P1) and the P-wave of the softer rock (P2). The P1-wave can be observed in each azimuthal receiver, but the P2-wave appears only in the azimuthal receivers toward the softer rock. When these two types of rock are both fast formations, two types of S-waves also exist, and they have better azimuthal sensitivity compared with P-waves. The S-wave of the harder rock (S1) appears only in receivers toward the harder rock, and the S-wave of the softer rock (S2) appears only in receivers toward the softer rock. A model was simulated in which the boundary between shale and sand penetrated the borehole but not the borehole axis. The P-wave of shale and the S-wave of sand are azimuthally sensitive to the azimuth angle variation of two formations. In addition, waveforms obtained from 3DAC working at the monopole-transmitting-azimuthal-receiving mode indicate that the corresponding P-waves and S-waves are azimuthally sensitive, too. Finally, we have developed a field example of 3DAC to support our simulation results: The azimuthal variation of the P-wave slowness was observed and can thus be used to reflect the azimuthal heterogeneity of formations.


1988 ◽  
Vol 11 ◽  
pp. 198 ◽  
Author(s):  
S. Anandakrishnan

Detailed seismic short-refraction profiling was conducted on Ice Stream Β (UpB) during the 1983–84 austral summer. A new high-resolution data logger, developed at the University of Wisconsin, recorded both compressional- and shear-wave arrivals. We report here on P-wave and S-wave profiles recorded along a line parallel to the axis of the ice stream. Source-receiver separations up to 720 m yielded seismic velocity-depth curves to below the firn-ice transition zone (slightly greater than 30 m at UpB). For the compressional-wave profile, geophones were separated by 2.5 m, which yielded a velocity-depth curve with a granularity of ∼1 m. The corresponding density-depth curve agrees well with direct density measurements obtained from a core extracted nearby (Alley and Bentley 1988, this volume). Discontinuities in the velocity gradient do not appear at the “critical densities” as they did at Byrd Station, Antarctica, and elsewhere (Kohnen and Bentley 1973 , Robertson and Bentley 1975). Two shear-wave profiles were recorded, both with geophone spacings of 5 m, one with longitudinal polarization (SV) and the other with transverse polarization (SH). There is a marked difference in velocity between the SH and SV waves, particularly in the shallow firn. We suggest that a strong vertical shape-and-bonding fabric in the shallow firn, as observed in cores collected at UpB, would account for this disparity.


2020 ◽  
Vol 221 (3) ◽  
pp. 1765-1776 ◽  
Author(s):  
Jia Wei ◽  
Li-Yun Fu ◽  
Zhi-Wei Wang ◽  
Jing Ba ◽  
José M Carcione

SUMMARY The Lord–Shulman thermoelasticity theory combined with Biot equations of poroelasticity, describes wave dissipation due to fluid and heat flow. This theory avoids an unphysical behaviour of the thermoelastic waves present in the classical theory based on a parabolic heat equation, that is infinite velocity. A plane-wave analysis predicts four propagation modes: the classical P and S waves and two slow waves, namely, the Biot and thermal modes. We obtain the frequency-domain Green's function in homogeneous media as the displacements-temperature solution of the thermo-poroelasticity equations. The numerical examples validate the presence of the wave modes predicted by the plane-wave analysis. The S wave is not affected by heat diffusion, whereas the P wave shows an anelastic behaviour, and the slow modes present a diffusive behaviour depending on the viscosity, frequency and thermoelasticity properties. In heterogeneous media, the P wave undergoes mesoscopic attenuation through energy conversion to the slow modes. The Green's function is useful to study the physics in thermoelastic media and test numerical algorithms.


2015 ◽  
Vol 3 (1) ◽  
pp. SF43-SF54 ◽  
Author(s):  
Shelby L. Peterie ◽  
Richard D. Miller

Tunnel locations are accurately interpreted from diffraction sections of focused mode converted P- to S-wave diffractions from a perpendicular tunnel and P-wave diffractions from a nonperpendicular (oblique) tunnel. Near-surface tunnels are ideal candidates for diffraction imaging due to their small size relative to the seismic wavelength and large acoustic impedance contrast at the tunnel interface. Diffraction imaging algorithms generally assume that the velocities of the primary wave and the diffracted wave are approximately equal, and that the diffraction apex is recorded directly above the scatterpoint. Scattering phenomena from shallow tunnels with kinematic properties that violate these assumptions were observed in one field data set and one synthetic data set. We developed the traveltime equations for mode-converted and oblique diffractions and demonstrated a diffraction imaging algorithm designed for the roll-along style of acquisition. Potential processing and interpretation pitfalls specific to these diffraction types were identified. Based on our observations, recommendations were made to recognize and image mode-converted and oblique diffractions and accurately interpret tunnel depth, horizontal location, and azimuth with respect to the seismic line.


Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1519-1527 ◽  
Author(s):  
Robert Sun ◽  
George A. McMechan

Reflected P‐to‐P and P‐to‐S converted seismic waves in a two‐component elastic common‐source gather generated with a P‐wave source in a two‐dimensional model can be imaged by two independent scalar reverse‐time depth migrations. The inputs to migration are pure P‐ and S‐waves that are extracted by divergence and curl calculations during (shallow) extrapolation of the elastic data recorded at the earth’s surface. For both P‐to‐P and P‐to‐S converted reflected waves, the imaging time at each point is the P‐wave traveltime from the source to that point. The extracted P‐wave is reverse‐time extrapolated and imaged with a P‐velocity model, using a finite difference solution of the scalar wave equation. The extracted S‐wave is reverse‐time extrapolated and imaged similarly, but with an S‐velocity model. Converted S‐wave data requires a polarity correction prior to migration to ensure constructive interference between data from adjacent sources. Synthetic examples show that the algorithm gives satisfactory results for laterally inhomogeneous models.


Sign in / Sign up

Export Citation Format

Share Document