S-Zero Stack: A converted wave processing to extract subsurface density information

Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. N1-N10
Author(s):  
Keshan Zou

Analyzing the Aki-Richards equation for converted waves, I found that it is possible to decouple the effect of density contrast from that of shear velocity contrast. The two terms were mixed when the P-wave incident angle was less than 30°, but they started to separate at a middle angle range (approximately 40°). The term related to S-wave velocity contrast reached zero at an incident angle around 60°. However, the other term, which was related to the density contrast, did not reverse polarity until 90°. Furthermore, this density term reached almost the maximum (magnitude) around 60°. Based on those characteristics, I designed a new method called “S-Zero Stack” to capture the density contrast reliably at the subsurface interface without going to inversion. S-Zero Stack captured subsurface density anomalies using a special stacking method. It is simple but robust, even when there is noise in the common-conversion-point gathers. Combined with the traditional P-wave amplitude-variation-with-offset technique, S-Zero Stack of PS-waves may help discriminate commercial gas from fizz in gas sand and could be a useful tool in shale gas exploration to locate lower-density anomalies (sweet spots).

Geophysics ◽  
2005 ◽  
Vol 70 (3) ◽  
pp. U29-U36 ◽  
Author(s):  
Mirko van der Baan

Common-midpoint (CMP) sorting of pure-mode data in arbitrarily complex isotropic or anisotropic media leads to moveout curves that are symmetric around zero offset. This greatly simplifies velocity determination of pure-mode data. Common-asymptotic-conversion-point (CACP) sorting of converted-wave data, on the other hand, only centers the apexes of all traveltimes around zero offset in arbitrarily complex but isotropic media with a constant P-wave/S-wave velocity ratio everywhere. A depth-varying CACP sorting may therefore be required to position all traveltimes properly around zero offset in structurally complex areas. Moreover, converted-wave moveout is nearly always asymmetric and nonhyperbolic. Thus, positive and negative offsets need to be processed independently in a 2D line, and 3D data volumes are to be divided in common azimuth gathers. All of these factors tend to complicate converted-wave velocity analysis significantly.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Britta Wawerzinek ◽  
Hermann Buness ◽  
Hartwig von Hartmann ◽  
David C. Tanner

AbstractThere are many successful geothermal projects that exploit the Upper Jurassic aquifer at 2–3 km depth in the German Molasse Basin. However, up to now, only P-wave seismic exploration has been carried out. In an experiment in the Greater Munich area, we recorded S-waves that were generated by the conventional P-wave seismic survey, using 3C receivers. From this, we built a 3D volume of P- to S-converted (PS) waves using the asymptotic conversion point approach. By combining the P-volume and the resulting PS-seismic volume, we were able to derive the spatial distribution of the vp/vs ratio of both the Molasse overburden and the Upper Jurassic reservoir. We found that the vp/vs ratios for the Molasse units range from 2.0 to 2.3 with a median of 2.15, which is much higher than previously assumed. This raises the depth of hypocenters of induced earthquakes in surrounding geothermal wells. The vp/vs ratios found in the Upper Jurassic vary laterally between 1.5 and 2.2. Since no boreholes are available for verification, we test our results against an independently derived facies classification of the conventional 3D seismic volume and found it correlates well. Furthermore, we see that low vp/vs ratios correlate with high vp and vs velocities. We interpret the latter as dolomitized rocks, which are connected with enhanced permeability in the reservoir. We conclude that 3C registration of conventional P-wave surveys is worthwhile.


Geophysics ◽  
1997 ◽  
Vol 62 (5) ◽  
pp. 1365-1368
Author(s):  
M. Boulfoul ◽  
Doyle R. Watts

The petroleum exploration industry uses S‐wave vertical seismic profiling (VSP) to determine S‐wave velocities from downgoing direct arrivals, and S‐wave reflectivities from upgoing waves. Seismic models for quantitative calibration of amplitude variation with offset (AVO) data require S‐wave velocity profiles (Castagna et al., 1993). Vertical summations (Hardage, 1983) of the upgoing waves produce S‐wave composite traces and enable interpretation of S‐wave seismic profile sections. In the simplest application of amplitude anomalies, the coincidence of high amplitude P‐wave reflectivity and low amplitude S‐wave reflectivity is potentially a direct indicator of the presence of natural gas.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB135-WB149 ◽  
Author(s):  
Qunshan Zhang ◽  
George A. McMechan

We have developed an alternative (new) method to produce common-image gathers in the incident-angle domain by calculating wavenumbers directly from the P-wave polarization rather than using the dominant wavenumber as the normal to the source wavefront. In isotropic acoustic media, the wave propagation direction can be directly calculated as the spatial gradient direction of the acoustic wavefield, which is parallel to the wavenumber direction (the normal to the wavefront). Instantaneous wavenumber, obtained via a novel Hilbert transform approach, is used to calculate the local normal to the reflectors in the migrated image. The local incident angle is produced as the difference between the propagation direction and the normal to the reflector. By reordering the migrated images (over all common-source gathers) with incident angle, common-image gathers are produced in the incident-angle domain. Instantaneous wavenumber takes the place of the normal to the reflector in the migrated image. P- and S-wave separations allow both PP and PS common-image gathers to be calculated in the angle domain. Unlike the space-shift image condition for calculating the common-image gather in angle domain, we use the crosscorrelation image condition, which is substantially more efficient. This is a direct method, and is less dependent on the data quality than the space-shift method. The concepts were successfully implemented and tested with 2D synthetic acoustic and elastic examples, including a complicated (Marmousi2) model that illustrates effects of multipathing in angle-domain common-image gathers.


2016 ◽  
Vol 4 (4) ◽  
pp. T613-T625 ◽  
Author(s):  
Qizhen Du ◽  
Bo Zhang ◽  
Xianjun Meng ◽  
Chengfeng Guo ◽  
Gang Chen ◽  
...  

Three-term amplitude-variation with offset (AVO) inversion generally suffers from instability when there is limited prior geologic or petrophysical constraints. Two-term AVO inversion shows higher instability compared with three-term AVO inversion. However, density, which is important in the fluid-type estimation, cannot be recovered from two-term AVO inversion. To reliably predict the P- and S-waves and density, we have developed a robust two-step joint PP- and PS-wave three-term AVO-inversion method. Our inversion workflow consists of two steps. The first step is to estimate the P- and S-wave reflectivities using Stewart’s joint two-term PP- and PS-AVO inversion. The second step is to treat the P-wave reflectivity obtained from the first step as the prior constraint to remove the P-wave velocity related-term from the three-term Aki-Richards PP-wave approximated reflection coefficient equation, and then the reduced PP-wave reflection coefficient equation is combined with the PS-wave reflection coefficient equation to estimate the S-wave and density reflectivities. We determined the effectiveness of our method by first applying it to synthetic models and then to field data. We also analyzed the condition number of the coefficient matrix to illustrate the stability of the proposed method. The estimated results using proposed method are superior to those obtained from three-term AVO inversion.


Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. A7-A11 ◽  
Author(s):  
Andrey Bakulin ◽  
Albena Mateeva ◽  
Rodney Calvert ◽  
Patsy Jorgensen ◽  
Jorge Lopez

We demonstrate a novel application of the virtual source method to create shear-wave sources at the location of buried geophones. These virtual downhole sources excite shear waves with a different radiation pattern than known sources. They can be useful in various shear-wave applications. Here we focus on the virtual shear check shot to generate accurate shear-velocity profiles in offshore environments using typical acquisition for marine walkaway vertical seismic profiling (VSP). The virtual source method is applied to walkaway VSP data to obtain new traces resembling seismograms acquired with downhole seismic sources at geophone locations, thus bypassing any overburden complexity. The virtual sources can be synthesized to radiate predominantly shear waves by collecting converted-wave energy scattered throughout the overburden. We illustrate the concept in a synthetic layered model and demonstrate the method by estimating accurate P- and S-wave velocity profiles below salt using a walkaway VSP from the deepwater Gulf of Mexico.


Geophysics ◽  
2001 ◽  
Vol 66 (6) ◽  
pp. 1721-1734 ◽  
Author(s):  
Antonio C. B. Ramos ◽  
John P. Castagna

Converted‐wave amplitude versus offset (AVO) behavior may be fit with a cubic relationship between reflection coefficient and ray parameter. Attributes extracted using this form can be directly related to elastic parameters with low‐contrast or high‐contrast approximations to the Zoeppritz equations. The high‐contrast approximation has the advantage of greater accuracy; the low‐contrast approximation is analytically simpler. The two coefficients of the low‐contrast approximation are a function of the average ratio of compressional‐to‐shear‐wave velocity (α/β) and the fractional changes in S‐wave velocity and density (Δβ/β and Δρ/ρ). Because of its simplicity, the low‐contrast approximation is subject to errors, particularly for large positive contrasts in P‐wave velocity associated with negative contrasts in S‐wave velocity. However, for incidence angles up to 40° and models confined to |Δβ/β| < 0.25, the errors in both coefficients are relatively small. Converted‐wave AVO crossplotting of the coefficients of the low‐contrast approximation is a useful interpretation technique. The background trend in this case has a negative slope and an intercept proportional to the α/β ratio and the fractional change in S‐wave velocity. For constant α/β ratio, an attribute trace formed by the weighted sum of the coefficients of the low‐contrast approximation provides useful estimates of the fractional change in S‐wave velocity and density. Using synthetic examples, we investigate the sensitivity of these parameters to random noise. Integrated P‐wave and converted‐wave analysis may improve estimation of rock properties by combining extracted attributes to yield fractional contrasts in P‐wave and S‐wave velocities and density. Together, these parameters may provide improved direct hydrocarbon indication and can potentially be used to identify anomalies caused by low gas saturations.


2016 ◽  
Vol 4 (2) ◽  
pp. T183-T190 ◽  
Author(s):  
Michael V. De Angelo ◽  
Bob A. Hardage

We acquired 3D multicomponent data in Andrews County, Midland Basin, West Texas with a seismic survey. We extracted direct-SV modes generated by a vertical-force source (an array of three inline vertical vibrators) from the vertical component of multicomponent geophones. This seismic mode, SV-P, was created by reprocessing legacy 2D/3D P-wave seismic data to create converted-wave data and consequently forgoing the need for a multicomponent seismic acquisition program to obtain important S-wave information from the subsurface. We have compared P-P, P-SV, and SV-P traveltime and amplitude characteristics to determine which seismic mode provided better characterization of the targeted reservoirs and reduced exploration risk.


Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. U139-U149
Author(s):  
Hongwei Liu ◽  
Mustafa Naser Al-Ali ◽  
Yi Luo

Seismic images can be viewed as photographs for underground rocks. These images can be generated from different reflections of elastic waves with different rock properties. Although the dominant seismic data processing is still based on the acoustic wave assumption, elastic wave processing and imaging have become increasingly popular in recent years. A major challenge in elastic wave processing is shear-wave (S-wave) velocity model building. For this reason, we have developed a sequence of procedures for estimating seismic S-wave velocities and the subsequent generation of seismic images using converted waves. We have two main essential new supporting techniques. The first technique is the decoupling of the S-wave information by generating common-focus-point gathers via application of the compressional-wave (P-wave) velocity on the converted seismic data. The second technique is to assume one common VP/ VS ratio to approximate two types of ratios, namely, the ratio of the average earth layer velocity and the ratio of the stacking velocity. The benefit is that we reduce two unknown ratios into one, so it can be easily scanned and picked in practice. The PS-wave images produced by this technology could be aligned with the PP-wave images such that both can be produced in the same coordinate system. The registration between the PP and PS images provides cross-validation of the migrated structures and a better estimation of underground rock and fluid properties. The S-wave velocity, computed from the picked optimal ratio, can be used not only for generating the PS-wave images, but also to ensure well registration between the converted-wave and P-wave images.


Sign in / Sign up

Export Citation Format

Share Document