Gaussian beam depth migration for anisotropic media

Geophysics ◽  
1995 ◽  
Vol 60 (5) ◽  
pp. 1474-1484 ◽  
Author(s):  
Tariq Alkhalifah

Gaussian beam migration (GBM), as it is implemented today, efficiently handles isotropic inhomogeneous media. The approach is based on the solution of the wave equation in ray‐centered coordinates. Here, I extend the method to work for 2-D migration in generally anisotropic inhomogeneous media. Extension of the Gaussian‐beam method from isotropic to anisotropic media involves modification of the kinematics and dynamics in the required ray tracing. While the accuracy of the paraxial expansion for anisotropic media is comparable to that for isotropic media, ray tracing in anisotropic media is much slower than that in isotropic media. However, because ray tracing is just a small portion of the computation in GBM, the increased computational effort in general anisotropic GBM is typically only about 40%. Application of this method to synthetic examples shows successful migration in inhomogeneous, transversely isotropic media for reflector dips up to and beyond 90°. Further applications to synthetic data of layered anisotropic media show the importance of applying the proper smoothing to the velocity field used in the migration. Also, tests with synthetic data show that the quality of anisotropic migration of steep events in a medium with velocity increasing with depth is much more sensitive to the Thomsen anisotropy parameter ε than to the parameter δ. Thus, a good estimate of ε is needed to apply anisotropic migration with confidence.

Geophysics ◽  
1996 ◽  
Vol 61 (4) ◽  
pp. 947-963 ◽  
Author(s):  
Tariq Alkhalifah

Nearly all dip‐moveout correction (DMO) implementations to date assume isotropic homogeneous media. Usually, this has been acceptable considering the tremendous cost savings of homogeneous isotropic DMO and considering the difficulty of obtaining the anisotropy parameters required for effective implementation. In the presence of typical anisotropy, however, ignoring the anisotropy can yield inadequate results. Since anisotropy may introduce large deviations from hyperbolic moveout, accurate transformation to zero‐offset in anisotropic media should address such nonhyperbolic moveout behavior of reflections. Artley and Hale’s v(z) ray‐tracing‐based DMO, developed for isotropic media, provides an attractive approach to treating such problems. By using a ray‐tracing procedure crafted for anisotropic media, I modify some aspects of their DMO so that it can work for v(z) anisotropic media. DMO impulse responses in typical transversely isotropic (TI) models (such as those associated with shales) deviate substantially from the familiar elliptical shape associated with responses in homogeneous isotropic media (to the extent that triplications arise even where the medium is homogeneous). Such deviations can exceed those caused by vertical inhomogeneity, thus emphasizing the importance of taking anisotropy into account in DMO processing. For isotropic or elliptically anisotropic media, the impulse response is an ellipse; but as the key anisotropy parameter η varies, the shape of the response differs substantially from elliptical. For typical η > 0, the impulse response in TI media tends to broaden compared to the response in an isotropic homogeneous medium, a behavior opposite to that encountered in typical v(z) isotropic media, where the response tends to be squeezed. Furthermore, the amplitude distribution along the DMO operator differs significantly from that for isotropic media. Application of this anisotropic DMO to data from offshore Africa resulted in a considerably better alignment of reflections from horizontal and dipping reflectors in common‐midpoint gather than that obtained using an isotropic DMO. Even the presence of vertical inhomogeneity in this medium could not eliminate the importance of considering the shale‐induced anisotropy.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. S133-S138 ◽  
Author(s):  
Tianfei Zhu ◽  
Samuel H. Gray ◽  
Daoliu Wang

Gaussian-beam depth migration is a useful alternative to Kirchhoff and wave-equation migrations. It overcomes the limitations of Kirchhoff migration in imaging multipathing arrivals, while retaining its efficiency and its capability of imaging steep dips with turning waves. Extension of this migration method to anisotropic media has, however, been hampered by the difficulties in traditional kinematic and dynamic ray-tracing systems in inhomogeneous, anisotropic media. Formulated in terms of elastic parameters, the traditional anisotropic ray-tracing systems aredifficult to implement and inefficient for computation, especially for the dynamic ray-tracing system. They may also result inambiguity in specifying elastic parameters for a given medium.To overcome these difficulties, we have reformulated the ray-tracing systems in terms of phase velocity.These reformulated systems are simple and especially useful for general transversely isotropic and weak orthorhombic media, because the phase velocities for these two types of media can be computed with simple analytic expressions. These two types of media also represent the majority of anisotropy observed in sedimentary rocks. Based on these newly developed ray-tracing systems, we have extended prestack Gaussian-beam depth migration to general transversely isotropic media. Test results with synthetic data show that our anisotropic, prestack Gaussian-beam migration is accurate and efficient. It produces images superior to those generated by anisotropic, prestack Kirchhoff migration.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. T281-T289 ◽  
Author(s):  
Qianru Xu ◽  
Weijian Mao

We have developed a fast ray-tracing method for multiple layered inhomogeneous anisotropic media, based on the generalized Snell’s law. Realistic geologic structures continuously varying with embedded discontinuities are parameterized by adopting cubic B-splines with nonuniformly spaced nodes. Because the anisotropic characteristic is often closely related to the interface configuration, this model parameterization scheme containing the natural inclination of the corresponding layer is particularly suitable for tilted transverse isotropic models whose symmetry axis is generally perpendicular to the direction of the layers. With this model parameterization, the first- and second-order spatial derivatives of the velocity within the interfaces can be effectively obtained, which facilitates the amplitude computation in dynamic ray tracing. By using complex initial conditions for the dynamic ray system and taking the multipath effect into consideration, our method is applicable to Gaussian beam migration. Numerical experiments of our method have been used to verify its effectiveness, practicability, and efficiency in memory storage and computation.


Geophysics ◽  
1994 ◽  
Vol 59 (4) ◽  
pp. 591-596 ◽  
Author(s):  
Suhas Phadke ◽  
S. Kapotas ◽  
N. Dai ◽  
Ernest R. Kanasewich

Wave propagation in transversely isotropic media is governed by the horizontal and vertical wave velocities. The quasi‐P(qP) wavefront is not an ellipse; therefore, the propagation cannot be described by the wave equation appropriate for elliptically anisotropic media. However, for a limited range of angles from the vertical, the dispersion relation for qP‐waves can be approximated by an ellipse. The horizontal velocity necessary for this approximation is different from the true horizontal velocity and depends upon the physical properties of the media. In the method described here, seismic data is migrated using a 45-degree wave equation for elliptically anisotropic media with the horizontal velocity determined by comparing the 45-degree elliptical dispersion relation and the quasi‐P‐dispersion relation. The method is demonstrated for some synthetic data sets.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. C153-C160 ◽  
Author(s):  
Lijiao Zhang ◽  
Bing Zhou

Kinematic ray tracing is an effective way to simulate the seismic wave propagation in isotropic and anisotropic media. It is essential to know the ray velocity when tracing seismic rays. But in anisotropic media, the ray velocity is a function of the direction of the slowness vector instead of the ray direction and it often deviates from the phase velocity. In this case, it causes a critical problem for ray tracing, which is how to calculate the ray velocity from a known ray direction. If we could calculate the phase slowness vector from ray directions, the ray velocity could be computed. We have evaluated a previous method in the first place. Then, we developed two new methods to solve two existing problems of the previous method: (1) It leads to complex and multiple solutions of the slowness vector and (2) it mixes up the qP- and qSV-wave modes. Our first method solves the two problems by applying eigenvalues to separate the wave modes and decrease the two unknowns ([Formula: see text] and [Formula: see text]) to only one unknown in two equations. Our second method is based on the general relationship between the slowness and ray-velocity vectors and shows that only one unknown is involved in one equation for tilted transversely isotropic (TTI) media. After obtaining the slowness vector, the ray velocity can be computed easily. A 2D model is designed to test the feasibility of the new methods. Using the results for the model, we found that the presented approaches were applicable for ray tracing in TTI media.


Geophysics ◽  
2008 ◽  
Vol 73 (4) ◽  
pp. D53-D62 ◽  
Author(s):  
Huub Douma ◽  
Mirko van der Baan

The [Formula: see text] domain is the natural domain for anisotropy parameter estimation in horizontally layered media. The need to transform the data to the [Formula: see text] domain or to pick traveltimes in the [Formula: see text] domain is, however, a practical disadvantage. To overcome this, we combine [Formula: see text]-derived traveltimes and offsets in horizontally layered transversely isotropic media with a vertical symmetry axis (VTI) with a rational interpolation procedure applied in the [Formula: see text] domain. This combination results in an accurate and efficient [Formula: see text]-based semblance analysis for anisotropy parameter estimation from the moveout of qP-waves in horizontally layered VTI media. The semblance analysis is applied to the moveout to search directly for the interval values of the relevant parameters. To achieve this, the method is applied in a layer-stripping fashion. We demonstrate the method using synthetic data examples and show that it is robust in the presence of random noise and moderate statics.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S329-S340 ◽  
Author(s):  
Yubo Yue ◽  
Paul Sava ◽  
Zhongping Qian ◽  
Jidong Yang ◽  
Zhen Zou

Gaussian beam migration (GBM) is an effective imaging method that has the ability to image multiple arrivals while preserving the advantages of ray-based methods. We have extended this method to linearized least-squares imaging for elastic waves in isotropic media. We have dynamically transformed the multicomponent data to the principal components of different wave modes using the polarization information available in the beam migration process, and then we use Gaussian beams as wavefield propagator to construct the forward modeling and adjoint migration operators. Based on the constructed operators, we formulate a least-squares migration scheme that is iteratively solved using a preconditioned conjugate gradient method. With this method, we can obtain crosstalk-attenuated multiwave images with better subsurface illumination and higher resolution than those of the conventional elastic Gaussian beam migration. This method also allows us to achieve a good balance between computational cost and imaging accuracy, which are both important requirements for iterative least-squares migrations. Numerical tests on two synthetic data sets demonstrate the validity and effectiveness of our proposed method.


2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Razec Cezar Sampaio Pinto da Silva Torres ◽  
Leandro Di Bartolo

ABSTRACT. Reverse time migration (RTM) is one of the most powerful methods used to generate images of the subsurface. The RTM was proposed in the early 1980s, but only recently it has been routinely used in exploratory projects involving complex geology – Brazilian pre-salt, for example. Because the method uses the two-way wave equation, RTM is able to correctly image any kind of geological environment (simple or complex), including those with anisotropy. On the other hand, RTM is computationally expensive and requires the use of computer clusters. This paper proposes to investigate the influence of anisotropy on seismic imaging through the application of RTM for tilted transversely isotropic (TTI) media in pre-stack synthetic data. This work presents in detail how to implement RTM for TTI media, addressing the main issues and specific details, e.g., the computational resources required. A couple of simple models results are presented, including the application to a BP TTI 2007 benchmark model.Keywords: finite differences, wave numerical modeling, seismic anisotropy. Migração reversa no tempo em meios transversalmente isotrópicos inclinadosRESUMO. A migração reversa no tempo (RTM) é um dos mais poderosos métodos utilizados para gerar imagens da subsuperfície. A RTM foi proposta no início da década de 80, mas apenas recentemente tem sido rotineiramente utilizada em projetos exploratórios envolvendo geologia complexa, em especial no pré-sal brasileiro. Por ser um método que utiliza a equação completa da onda, qualquer configuração do meio geológico pode ser corretamente tratada, em especial na presença de anisotropia. Por outro lado, a RTM é dispendiosa computacionalmente e requer o uso de clusters de computadores por parte da indústria. Este artigo apresenta em detalhes uma implementação da RTM para meios transversalmente isotrópicos inclinados (TTI), abordando as principais dificuldades na sua implementação, além dos recursos computacionais exigidos. O algoritmo desenvolvido é aplicado a casos simples e a um benchmark padrão, conhecido como BP TTI 2007.Palavras-chave: diferenças finitas, modelagem numérica de ondas, anisotropia sísmica.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 268-284 ◽  
Author(s):  
Ilya Tsvankin

Description of reflection moveout from dipping interfaces is important in developing seismic processing methods for anisotropic media, as well as in the inversion of reflection data. Here, I present a concise analytic expression for normal‐moveout (NMO) velocities valid for a wide range of homogeneous anisotropic models including transverse isotropy with a tilted in‐plane symmetry axis and symmetry planes in orthorhombic media. In transversely isotropic media, NMO velocity for quasi‐P‐waves may deviate substantially from the isotropic cosine‐of‐dip dependence used in conventional constant‐velocity dip‐moveout (DMO) algorithms. However, numerical studies of NMO velocities have revealed no apparent correlation between the conventional measures of anisotropy and errors in the cosine‐of‐dip DMO correction (“DMO errors”). The analytic treatment developed here shows that for transverse isotropy with a vertical symmetry axis, the magnitude of DMO errors is dependent primarily on the difference between Thomsen parameters ε and δ. For the most common case, ε − δ > 0, the cosine‐of‐dip–corrected moveout velocity remains significantly larger than the moveout velocity for a horizontal reflector. DMO errors at a dip of 45 degrees may exceed 20–25 percent, even for weak anisotropy. By comparing analytically derived NMO velocities with moveout velocities calculated on finite spreads, I analyze anisotropy‐induced deviations from hyperbolic moveout for dipping reflectors. For transversely isotropic media with a vertical velocity gradient and typical (positive) values of the difference ε − δ, inhomogeneity tends to reduce (sometimes significantly) the influence of anisotropy on the dip dependence of moveout velocity.


Sign in / Sign up

Export Citation Format

Share Document