Local high-resolution passive seismic tomography and Kohonen neural networks — Application at the Rio-Antirio Strait, central Greece

Geophysics ◽  
2007 ◽  
Vol 72 (4) ◽  
pp. B93-B106 ◽  
Author(s):  
G-Akis Tselentis ◽  
Anna Serpetsidaki ◽  
Nikolaos Martakis ◽  
Efthimios Sokos ◽  
Paraskevas Paraskevopoulos ◽  
...  

A high-resolution passive seismic investigation was performed in a [Formula: see text] area around the Rio-Antirio Strait in central Greece using natural microearthquakes recorded during three months by a dense, temporary seismic network consisting of 70 three-component surface stations. This work was part of the investigation for a planned underwater rail tunnel, and it gives us the opportunity to investigate the potential of this methodology. First, 150 well-located earthquake events were selected to compute a minimum (1D) velocity model for the region. Next, the 1D model served as the initial model for nonlinear inversion for a 3D P- and S- velocity crustal structure by iteratively solving the coupled hypocenter-velocity problem using a least-squares method. The retrieved [Formula: see text] and [Formula: see text] images were used as an input to Kohonen self-organizing maps (SOMs) to identify, systematically and objectively, the prominent lithologies in the region. SOMs are unsupervised artificial neural networks that map the input space into clusters in a topological form whose organization is related to trends in the input data. This analysis revealed the existence of five major clusters, one of which may be related to the existence of an evaporite body not shown in the conventional seismic tomography velocity volumes. The survey results provide, for the first time, a 3D model of the subsurface in and around the Rio-Antirio Strait. It is the first time that passive seismic tomography is used together with SOM methodologies at this scale, thus revealing the method’s potential.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Quan Sun ◽  
Shunping Pei ◽  
Zhongxiong Cui ◽  
Yongshun John Chen ◽  
Yanbing Liu ◽  
...  

AbstractDetailed crustal structure of large earthquake source regions is of great significance for understanding the earthquake generation mechanism. Numerous large earthquakes have occurred in the NE Tibetan Plateau, including the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes. In this paper, we obtained a high-resolution three-dimensional crustal velocity model around the source regions of these two large earthquakes using an improved double-difference seismic tomography method. High-velocity anomalies encompassing the seismogenic faults are observed to extend to depths of 15 km, suggesting the asperity (high-velocity area) plays an important role in the preparation process of large earthquakes. Asperities are strong in mechanical strength and could accumulate tectonic stress more easily in long frictional locking periods, large earthquakes are therefore prone to generate in these areas. If the close relationship between the aperity and high-velocity bodies is valid for most of the large earthquakes, it can be used to predict potential large earthquakes and estimate the seismogenic capability of faults in light of structure studies.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B41-B57 ◽  
Author(s):  
Himanshu Barthwal ◽  
Mirko van der Baan

Microseismicity is recorded during an underground mine development by a network of seven boreholes. After an initial preprocessing, 488 events are identified with a minimum of 12 P-wave arrival-time picks per event. We have developed a three-step approach for P-wave passive seismic tomography: (1) a probabilistic grid search algorithm for locating the events, (2) joint inversion for a 1D velocity model and event locations using absolute arrival times, and (3) double-difference tomography using reliable differential arrival times obtained from waveform crosscorrelation. The originally diffusive microseismic-event cloud tightens after tomography between depths of 0.45 and 0.5 km toward the center of the tunnel network. The geometry of the event clusters suggests occurrence on a planar geologic fault. The best-fitting plane has a strike of 164.7° north and dip angle of 55.0° toward the west. The study region has known faults striking in the north-northwest–south-southeast direction with a dip angle of 60°, but the relocated event clusters do not fall along any mapped fault. Based on the cluster geometry and the waveform similarity, we hypothesize that the microseismic events occur due to slips along an unmapped fault facilitated by the mining activity. The 3D velocity model we obtained from double-difference tomography indicates lateral velocity contrasts between depths of 0.4 and 0.5 km. We interpret the lateral velocity contrasts in terms of the altered rock types due to ore deposition. The known geotechnical zones in the mine indicate a good correlation with the inverted velocities. Thus, we conclude that passive seismic tomography using microseismic data could provide information beyond the excavation damaged zones and can act as an effective tool to complement geotechnical evaluations.


1987 ◽  
Vol 65 (1) ◽  
pp. 94-100 ◽  
Author(s):  
Z. Jakubek ◽  
R. Kepa ◽  
A. Para ◽  
M. Rytel

The three bands (0–0, 1–0, 0–1) of the B2Σ+ – A2Πi system of the 12C16O+ molecule have been photographed at high resolution. In total, 824 lines were measured, from which 608 were fitted by a nonlinear least squares method to determine 33 molecular constants. The band-by-band results were merged to obtain 23 molecular constants for the B2Σ+, ν = 0 and 1, and A2Πi, ν = 0 and 1, states. The Λ-doubling constants and spin-orbit constants in the A2Πi, ν = 1 state and spin-rotation constants in the B2Σ+, ν = 0 and 1 states were obtained for the first time, and other constants were defined more precisely.


Geophysics ◽  
2021 ◽  
pp. 1-92
Author(s):  
Wei Zhang ◽  
Jinghuai Gao ◽  
Tao Yang ◽  
Xiudi Jiang ◽  
Wenbo Sun

Least-squares reverse time migration (LSRTM) has the potential to reconstruct a high-resolution image of subsurface reflectivity. However, the current data-domain LSRTM approach, which iteratively updates the subsurface reflectivity by minimizing the data residuals, is a computationally expensive task. To alleviate this problem and improve imaging quality, we develop a LSRTM approach using convolutional neural networks (CNNs), which is referred to as CNN-LSRTM. Specifically, the LSRTM problem can be implemented via a gradient-like iterative scheme, in which the updating component in each iteration is learned via a CNN model. In order to make the most of observation data and migration velocity model at hand, we utilize the common-source RTM image, the stacked RTM image, and the migration velocity model rather than only the stacked RTM image as the input data of CNN. We have successfully trained the constructed CNN model on the training data sets with a total of 5000 randomly layered and fault models. Based on the well-trained CNN model, we have proved that the proposed approach can efficiently recover the high-resolution reflection image for the layered, fault, and overthrust models. Through a marine field data experiment, it can determine the benefit of our constructed CNN model in terms of computational efficiency. In addition, we analyze the influence of input data of the constructed CNN model on the reconstruction quality of the reflection image.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. A53-A57 ◽  
Author(s):  
Yangkang Chen

Velocity analysis is crucial in reflection seismic data processing and imaging. Velocity picking is widely used in the industry for building the initial velocity model. When the size of the seismic data becomes extremely large, we cannot afford the corresponding human endeavor that is required by the velocity picking. In such situations, an automatic velocity-picking algorithm is highly demanded. We have developed a novel automatic velocity-analysis algorithm that is based on the high-resolution hyperbolic Radon transform. We formulate the automatic velocity-analysis problem as a constrained optimization problem. To solve the optimization problem with a hard constraint on the sparsity and distribution of the velocity spectrum, we relax it to a more familiar L1-regularized optimization problem in two steps. We use the iterative preconditioned least-squares method to solve the L1-regularized problem, and then we apply the hard constraint of the target optimization during the iterative inversion. Using synthetic and field-data examples, we determine the successful performance of our algorithm.


1985 ◽  
Vol 50 (11) ◽  
pp. 2480-2492 ◽  
Author(s):  
Soňa Přádná ◽  
Dušan Papoušek ◽  
Jyrki Kauppinen ◽  
Sergei P. Belov ◽  
Andrei F. Krupnov ◽  
...  

Fourier transform spectra of the ν2 band of PH3 have been remeasured with 0.0045 cm-1 resolution. Ground state combination differences from these data have been fitted simultaneously with the microwave and submillimeterwave data to determine the ground state spectroscopical parameters of PH3 including the parameters of the Δk = ± 3n interactions. The correlation between the latter parameters has been discussed from the point of view of the existence of two equivalent effective rotational operators which are related by a unitary transformation. The ΔJ = 0, +1, ΔK = 0 (A1 ↔ A2, E ↔ E) rotational transitions in the ν2 and ν4 states have been measured for the first time by using a microwave spectrometer and a radiofrequency spectrometer with acoustic detection.


1991 ◽  
Vol 148 ◽  
pp. 415-420 ◽  
Author(s):  
R. S. Booth ◽  
Th. De Graauw

In this short review we describe recent new observations of millimetre transitions of molecules in selected regions of the Magellanic Clouds. The observations were made using the Swedish-ESO Submillimetre Telescope, SEST, (Booth et al. 1989), the relatively high resolution of which facilitates, for the first time, observations of individual giant molecular clouds in the Magellanic Clouds. We have mapped the distribution of the emission from the two lowest rotational transitions of 12CO and 13CO and hence have derived excitation conditions for the molecule. In addition, we have observed several well-known interstellar molecules in the same regions, thus doubling the number of known molecules in the Large Magellanic Cloud (LMC). The fact that all the observations have been made under controlled conditions with the same telescope enables a reasonable intercomparison of the molecular column densities. In particular, we are able to observe the relative abundances among the different isotopically substituted species of CO.


Sign in / Sign up

Export Citation Format

Share Document