Automatic velocity analysis using high-resolution hyperbolic Radon transform

Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. A53-A57 ◽  
Author(s):  
Yangkang Chen

Velocity analysis is crucial in reflection seismic data processing and imaging. Velocity picking is widely used in the industry for building the initial velocity model. When the size of the seismic data becomes extremely large, we cannot afford the corresponding human endeavor that is required by the velocity picking. In such situations, an automatic velocity-picking algorithm is highly demanded. We have developed a novel automatic velocity-analysis algorithm that is based on the high-resolution hyperbolic Radon transform. We formulate the automatic velocity-analysis problem as a constrained optimization problem. To solve the optimization problem with a hard constraint on the sparsity and distribution of the velocity spectrum, we relax it to a more familiar L1-regularized optimization problem in two steps. We use the iterative preconditioned least-squares method to solve the L1-regularized problem, and then we apply the hard constraint of the target optimization during the iterative inversion. Using synthetic and field-data examples, we determine the successful performance of our algorithm.

2019 ◽  
Vol 37 (4) ◽  
Author(s):  
Marcelo Souza ◽  
Milton Porsani

ABSTRACTThe conventional velocity analysis does not consider AVO effects in reflection seismic data. These conditions lead to obtaining of inadequate velocity fields, making it difficult to execute other steps in seismic processing. To overcome this problem, researchers developed the Weighted AB semblance method, a coherence measure which deals with AVO effects in velocity spectra. It is based on the application of two sigmoid weighting functions to AB semblance, which depend on four coefficients. The values of these coefficients directly influence the resolution of the resulting velocity spectrum. In this work, we apply the inversion algorithm Very Fast Simulated Annealing (VFSA) to obtain these values. Numerical experiments show that VFSA is a quite effective method, obtaining correct coefficient values and allowing the generation of the velocity spectrum with an excellent resolution for both synthetic and real data. Results also proved that Weighted AB semblance is an optimal coherence measure to be used in velocity spectrum, because it is insensitive to AVO effects and reversal polarity and presents considerably a better resolution than conventional semblance.Keywords: velocity analysis, AVO, high-resolution velocity spectra RESUMOA análise de velocidades convencional não considera efeitos de AVO em dados sísmicos de reflexão. Essas condições levam à obtenção de campos de velocidades inadequados, dificultando a execução de outras etapas do processamento sísmico. Para superar esse problema, pesquisadores desenvolveram o método AB semblance Ponderado, uma medida de coerência que lida com efeitos de AVO em espectros de velocidades. Ela ´e baseada na aplicação de duas funções sigmoides à AB semblance, que depende de quatro coeficientes. Os valores desses coeficientes influenciam diretamente a resolução do espectro de velocidade resultante. Nesse trabalho, n´os aplicamos o algoritmo de inversão Very Fast Simulated Annealing (VFSA) para obter esses valores. Experimentos numéricos mostram que VFSA é um método bastante eficaz, obtendo valores corretos dos coeficientes e permitindo a geração do espectro de velocidade com uma excelente resolução tanto para dados sintéticos quanto para dados reais. Resultados também provam que o AB semblance Ponderado ´e uma medida de coerência ótima para ser usada no espectro de velocidade, porque ela é insensível aos efeitos de AVO e apresenta resolução consideravelmente melhor do que a semblance convencional.Palavras-chave: análise de velocidades, AVO, espectro de velocidades de alta resolução.


2021 ◽  
Vol 11 (1) ◽  
pp. 78
Author(s):  
Jianbo He ◽  
Zhenyu Wang ◽  
Mingdong Zhang

When the signal to noise ratio of seismic data is very low, velocity spectrum focusing will be poor., the velocity model obtained by conventional velocity analysis methods is not accurate enough, which results in inaccurate migration. For the low signal noise ratio (SNR) data, this paper proposes to use partial Common Reflection Surface (CRS) stack to build CRS gathers, making full use of all of the reflection information of the first Fresnel zone, and improves the signal to noise ratio of pre-stack gathers by increasing the number of folds. In consideration of the CRS parameters of the zero-offset rays emitted angle and normal wave front curvature radius are searched on zero offset profile, we use ellipse evolving stacking to improve the zero offset section quality, in order to improve the reliability of CRS parameters. After CRS gathers are obtained, we use principal component analysis (PCA) approach to do velocity analysis, which improves the noise immunity of velocity analysis. Models and actual data results demonstrate the effectiveness of this method.


Geophysics ◽  
1996 ◽  
Vol 61 (6) ◽  
pp. 1846-1858 ◽  
Author(s):  
Claudio Bagaini ◽  
Umberto Spagnolini

Continuation to zero offset [better known as dip moveout (DMO)] is a standard tool for seismic data processing. In this paper, the concept of DMO is extended by introducing a set of operators: the continuation operators. These operators, which are implemented in integral form with a defined amplitude distribution, perform the mapping between common shot or common offset gathers for a given velocity model. The application of the shot continuation operator for dip‐independent velocity analysis allows a direct implementation in the acquisition domain by exploiting the comparison between real data and data continued in the shot domain. Shot and offset continuation allow the restoration of missing shot or missing offset by using a velocity model provided by common shot velocity analysis or another dip‐independent velocity analysis method.


2013 ◽  
Vol 167 ◽  
pp. 72-83 ◽  
Author(s):  
J.S. L'Heureux ◽  
M. Long ◽  
M. Vanneste ◽  
G. Sauvin ◽  
L. Hansen ◽  
...  

2017 ◽  
Vol 5 (3) ◽  
pp. T287-T298 ◽  
Author(s):  
Julian Ivanov ◽  
Richard D. Miller ◽  
Daniel Feigenbaum ◽  
Sarah L. C. Morton ◽  
Shelby L. Peterie ◽  
...  

Shear-wave velocities were estimated at a levee site by inverting Love waves using the multichannel analysis of surface waves (MASW) method augmented with the high-resolution linear Radon transform (HRLRT). The selected site was one of five levee sites in southern Texas chosen for the evaluation of several seismic data-analysis techniques readily available in 2004. The methods included P- and S-wave refraction tomography, Rayleigh- and Love-wave surface-wave analysis using MASW, and P- and S-wave cross-levee tomography. The results from the 2004 analysis revealed that although the P-wave methods provided reasonable and stable results, the S-wave methods produced surprisingly inconsistent shear-wave velocity [Formula: see text] estimates and trends compared with previous studies and borehole investigations. In addition, the Rayleigh-wave MASW method was nearly useless within the levee due to the sparsity of high frequencies in fundamental-mode surface waves and complexities associated with inverting higher modes. This prevented any reliable [Formula: see text] estimates for the levee core. Recent advances in methodology, such as the HRLRT for obtaining higher resolution dispersion-curve images with the MASW method and the use of Love-wave inversion routines specific to Love waves as part of the MASW method, provided the motivation to extend the 2004 original study by using horizontal-component seismic data for characterizing the geologic properties of levees. Contributions from the above-mentioned techniques were instrumental in obtaining [Formula: see text] estimates from within these levees that were very comparable with the measured borehole samples. A Love-wave approach can be a viable alternative to Rayleigh-wave MASW surveys at sites where complications associated with material or levee geometries inhibit reliable [Formula: see text] results from Rayleigh waves.


Geophysics ◽  
2007 ◽  
Vol 72 (6) ◽  
pp. U89-U94 ◽  
Author(s):  
Sergey Fomel ◽  
Evgeny Landa ◽  
M. Turhan Taner

Small geologic features manifest themselves in seismic data in the form of diffracted waves, which are fundamentally different from seismic reflections. Using two field-data examples and one synthetic example, we demonstrate the possibility of separating seismic diffractions in the data and imaging them with optimally chosen migration velocities. Our criteria for separating reflection and diffraction events are the smoothness and continuity of local event slopes that correspond to reflection events. For optimal focusing, we develop the local varimax measure. The objectives of this work are velocity analysis implemented in the poststack domain and high-resolution imaging of small-scale heterogeneities. Our examples demonstrate the effectiveness of the proposed method for high-resolution imaging of such geologic features as faults, channels, and salt boundaries.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. U53-U63 ◽  
Author(s):  
Andrea Tognarelli ◽  
Eusebio Stucchi ◽  
Alessia Ravasio ◽  
Alfredo Mazzotti

We tested the properties of three different coherency functionals for the velocity analysis of seismic data relative to subbasalt exploration. We evaluated the performance of the standard semblance algorithm and two high-resolution coherency functionals based on the use of analytic signals and of the covariance estimation along hyperbolic traveltime trajectories. Approximate knowledge of the wavelet was exploited to design appropriate filters that matched the primary reflections, thereby further improving the ability of the functionals to highlight the events of interest. The tests were carried out on two synthetic seismograms computed on models reproducing the geologic setting of basaltic intrusions and on common midpoint gathers from a 3D survey. Synthetic and field data had a very low signal-to-noise ratio, strong multiple contamination, and weak primary subbasalt signals. The results revealed that high-resolution coherency functionals were more suitable than semblance algorithms to detect primary signals and to distinguish them from multiples and other interfering events. This early discrimination between primaries and multiples could help to target specific signal enhancement and demultiple operations.


2020 ◽  
Author(s):  
Hao Zhang ◽  
Jianguang Han ◽  
Heng Zhang ◽  
Yi Zhang

<p>The seismic waves exhibit various types of attenuation while propagating through the subsurface, which is strongly related to the complexity of the earth. Anelasticity of the subsurface medium, which is quantified by the quality factor Q, causes dissipation of seismic energy. Attenuation distorts the phase of the seismic data and decays the higher frequencies in the data more than lower frequencies. Strong attenuation effect resulting from geology such as gas pocket is a notoriously challenging problem for high resolution imaging because it strongly reduces the amplitude and downgrade the imaging quality of deeper events. To compensate this attenuation effect, first we need to accurately estimate the attenuation model (Q). However, it is challenging to directly derive a laterally and vertically varying attenuation model in depth domain from the surface reflection seismic data. This research paper proposes a method to derive the anomalous Q model corresponding to strong attenuative media from marine reflection seismic data using a deep-learning approach, the convolutional neural network (CNN). We treat Q anomaly detection problem as a semantic segmentation task and train an encoder-decoder CNN (U-Net) to perform a pixel-by-pixel prediction on the seismic section to invert a pixel group belongs to different level of attenuation probability which can help to build up the attenuation model. The proposed method in this paper uses a volume of marine 3D reflection seismic data for network training and validation, which needs only a very small amount of data as the training set due to the feature of U-Net, a specific encoder-decoder CNN architecture in semantic segmentation task. Finally, in order to evaluate the attenuation model result predicted by the proposed method, we validate the predicted heterogeneous Q model using de-absorption pre-stack depth migration (Q-PSDM), a high-resolution depth imaging result with reasonable compensation is obtained.</p>


Sign in / Sign up

Export Citation Format

Share Document