Seismic inversion combining rock physics and multiple-point geostatistics

Geophysics ◽  
2008 ◽  
Vol 73 (1) ◽  
pp. R11-R21 ◽  
Author(s):  
Ezequiel F. González ◽  
Tapan Mukerji ◽  
Gary Mavko

A novel inversion technique combines rock physics and multiple-point geostatistics. The technique is based on the formulation of the inverse problem as an inference problem and incorporates multiple-point geostatistics and conditional rock physics to characterize previously known geologic information. The proposed implementation combines elements of sampling from conditional probabilities and elements of optimization. The technique provides multiple solutions, all consistent with the expected geology, well-log data, seismic data, and the local rock-physics transformations. A pattern-based algorithm was selected as the multiple-point geostatistics component. Rock-physics principles are incorporated at the beginning of the process, defining the links between reservoir properties (e.g., lithology, saturation) and physical quantities (e.g., compressibility, density), making it possible to predict situations not sampled by log data. Results for seismic lithofacies inversion on a synthetic test and a real data application demonstrate the validity and applicability of the proposed inversion technique.

Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Bastien Dupuy ◽  
Anouar Romdhane ◽  
Pierre-Louis Nordmann ◽  
Peder Eliasson ◽  
Joonsang Park

Risk assessment of CO2 storage requires the use of geophysical monitoring techniques to quantify changes in selected reservoir properties such as CO2 saturation, pore pressure and porosity. Conformance monitoring and associated decision-making rest upon the quantified properties derived from geophysical data, with uncertainty assessment. A general framework combining seismic and controlled source electromagnetic inversions with rock physics inversion is proposed with fully Bayesian formulations for proper quantification of uncertainty. The Bayesian rock physics inversion rests upon two stages. First, a search stage consists in exploring the model space and deriving models with associated probability density function (PDF). Second, an appraisal or importance sampling stage is used as a "correction" step to ensure that the full model space is explored and that the estimated posterior PDF can be used to derive quantities like marginal probability densities. Both steps are based on the neighbourhood algorithm. The approach does not require any linearization of the rock physics model or assumption about the model parameters distribution. After describing the CO2 storage context, the available data at the Sleipner field before and after CO2 injection (baseline and monitor), and the rock physics models, we perform an extended sensitivity study. We show that prior information is crucial, especially in the monitor case. We demonstrate that joint inversion of seismic and CSEM data is also key to quantify CO2 saturations properly. We finally apply the full inversion strategy to real data from Sleipner. We obtain rock frame moduli, porosity, saturation and patchiness exponent distributions and associated uncertainties along a 1D profile before and after injection. The results are consistent with geology knowledge and reservoir simulations, i.e., that the CO2 saturations are larger under the caprock confirming the CO2 upward migration by buoyancy effect. The estimates of patchiness exponent have a larger uncertainty, suggesting semi-patchy mixing behaviour.


2019 ◽  
Vol 38 (5) ◽  
pp. 332-332
Author(s):  
Yongyi Li ◽  
Lev Vernik ◽  
Mark Chapman ◽  
Joel Sarout

Rock physics links the physical properties of rocks to geophysical and petrophysical observations and, in the process, serves as a focal point in many exploration and reservoir characterization studies. Today, the field of rock physics and seismic petrophysics embraces new directions with diverse applications in estimating static and dynamic reservoir properties through time-variant mechanical, thermal, chemical, and geologic processes. Integration with new digital and computing technologies is gradually gaining traction. The use of rock physics in seismic imaging, prestack seismic analysis, seismic inversion, and geomechanical model building also contributes to the increase in rock-physics influence. This special section highlights current rock-physics research and practices in several key areas, namely experimental rock physics, rock-physics theory and model studies, and the use of rock physics in reservoir characterizations.


2017 ◽  
Vol 25 (03) ◽  
pp. 1750022
Author(s):  
Xiuwei Yang ◽  
Peimin Zhu

Acoustic impedance (AI) from seismic inversion can indicate rock properties and can be used, when combined with rock physics, to predict reservoir parameters, such as porosity. Solutions to seismic inversion problem are almost nonunique due to the limited bandwidth of seismic data. Additional constraints from well log data and geology are needed to arrive at a reasonable solution. In this paper, sedimentary facies is used to reduce the uncertainty in inversion and rock physics modeling; the results not only agree with seismic data, but also conform to geology. A reservoir prediction method, which incorporates seismic data, well logs, rock physics and sedimentary facies, is proposed. AI was first derived by constrained sparse spike inversion (CSSI) using a sedimentary facies dependent low-frequency model, and then was transformed to reservoir parameters by sequential simulation, statistical rock physics and [Formula: see text]-model. Two numerical experiments using synthetic model and real data indicated that the sedimentary facies information may help to obtain a more reasonable prediction.


2005 ◽  
Author(s):  
Ron McWhorter ◽  
Duane Pierce ◽  
Niranjan Banik ◽  
Haibin Xu ◽  
George Bunge ◽  
...  

2006 ◽  
Author(s):  
Ezequiel F. González ◽  
Gary Mavko ◽  
Tapan Mukerji

Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. 75A165-75A176 ◽  
Author(s):  
Miguel Bosch ◽  
Tapan Mukerji ◽  
Ezequiel F. Gonzalez

There are various approaches for quantitative estimation of reservoir properties from seismic inversion. A general Bayesian formulation for the inverse problem can be implemented in two different work flows. In the sequential approach, first seismic data are inverted, deterministically or stochastically, into elastic properties; then rock-physics models transform those elastic properties to the reservoir property of interest. The joint or simultaneous work flow accounts for the elastic parameters and the reservoir properties, often in a Bayesian formulation, guaranteeing consistency between the elastic and reservoir properties. Rock physics plays the important role of linking elastic parameters such as impedances and velocities to reservoir properties of interest such as lithologies, porosity, and pore fluids. Geostatistical methods help add constraints of spatial correlation, conditioning to different kinds of data and incorporating subseismic scales of heterogeneities.


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. O21-O37 ◽  
Author(s):  
Dario Grana ◽  
Ernesto Della Rossa

A joint estimation of petrophysical properties is proposed that combines statistical rock physics and Bayesian seismic inversion. Because elastic attributes are correlated with petrophysical variables (effective porosity, clay content, and water saturation) and this physical link is associated with uncertainties, the petrophysical-properties estimation from seismic data can be seen as a Bayesian inversion problem. The purpose of this work was to develop a strategy for estimating the probability distributions of petrophysical parameters and litho-fluid classes from seismics. Estimation of reservoir properties and the associated uncertainty was performed in three steps: linearized seismic inversion to estimate the probabilities of elastic parameters, probabilistic upscaling to include the scale-changes effect, and petrophysical inversion to estimate the probabilities of petrophysical variables andlitho-fluid classes. Rock-physics equations provide the linkbetween reservoir properties and velocities, and linearized seismic modeling connects velocities and density to seismic amplitude. A full Bayesian approach was adopted to propagate uncertainty from seismics to petrophysics in an integrated framework that takes into account different sources of uncertainty: heterogeneity of the real data, approximation of physical models, measurement errors, and scale changes. The method has been tested, as a feasibility step, on real well data and synthetic seismic data to show reliable propagation of the uncertainty through the three different steps and to compare two statistical approaches: parametric and nonparametric. Application to a real reservoir study (including data from two wells and partially stacked seismic volumes) has provided as a main result the probability densities of petrophysical properties and litho-fluid classes. It demonstrated the applicability of the proposed inversion method.


2020 ◽  
Vol 70 (1) ◽  
pp. 209-220
Author(s):  
Qazi Sohail Imran ◽  
◽  
Numair Ahmad Siddiqui ◽  
Abdul Halim Abdul Latif ◽  
Yasir Bashir ◽  
...  

Offshore petroleum systems are often very complex and subtle because of a variety of depositional environments. Characterizing a reservoir based on conventional seismic and well-log stratigraphic analysis in intricate settings often leads to uncertainties. Drilling risks, as well as associated subsurface uncertainties can be minimized by accurate reservoir delineation. Moreover, a forecast can also be made about production and performance of a reservoir. This study is aimed to design a workflow in reservoir characterization by integrating seismic inversion, petrophysics and rock physics tools. Firstly, to define litho facies, rock physics modeling was carried out through well log analysis separately for each facies. Next, the available subsurface information is incorporated in a Bayesian engine which outputs several simulations of elastic reservoir properties, as well as their probabilities that were used for post-inversion analysis. Vast areal coverage of seismic and sparse vertical well log data was integrated by geostatistical inversion to produce acoustic impedance realizations of high-resolution. Porosity models were built later using the 3D impedance model. Lastly, reservoir bodies were identified and cross plot analysis discriminated the lithology and fluid within the bodies successfully.


Sign in / Sign up

Export Citation Format

Share Document