Inversion of the seismic AVF/AVA signatures of highly attenuative targets

Geophysics ◽  
2011 ◽  
Vol 76 (1) ◽  
pp. R1-R14 ◽  
Author(s):  
Kristopher A. Innanen

Frequency-dependent seismic field data anomalies, appearing in association with low-[Formula: see text] targets, have, on occasion, been attributed to the presence of a strong absorptive reflection coefficient. This “absorptive reflectivity” represents a potent, and largely untapped, source of information for determining subsurface target properties. It would most likely be encountered where a predominantly elastic/nonattenuating overburden suddenly is interrupted by a highly attenuative target. Series expansions of absorptive reflection coefficients about small parameter contrasts and incidence angles can expose these anomalies to analysis, either frequency-by-frequency (amplitude variation with frequency [AVF]) or angle-by-angle (amplitude variation with angle of incidence [AVA]). Within this framework, variations in P-wave velocity and [Formula: see text] can be estimated separately through a range of direct formulas, both linear and with nonlinear corrections. The latter come to the fore when a contrast from an incidence medium [Formula: see text] (i.e., acoustic/elastic) to a target medium [Formula: see text] is encountered, in which case the linearized estimate can be in error by as much as 50%. Algorithmically, it is a differencing of the reflection coefficient across frequencies that separates [Formula: see text] variations from variations in other parameters. This holds for both two-parameter (P-wave velocity and [Formula: see text]) problems and five-parameter anelastic problems, and would appear to be a general feature of direct absorptive inversion.

Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. B1-B7 ◽  
Author(s):  
Abdullatif A. Al-Shuhail

Vertical aligned fractures can significantly enhance the horizontal permeability of a tight reservoir. Therefore, it is important to know the fracture porosity and direction in order to develop the reservoir efficiently. P-wave AVOA (amplitude variation with offset and azimuth) can be used to determine these fracture parameters. In this study, I present a method for inverting the fracture porosity from 2D P-wave seismic data. The method is based on a modeling result that shows that the anisotropic AVO (amplitude variation with offset) gradient is negative and linearly dependent on the fracture porosity in a gas-saturated reservoir, whereas the gradient is positive and linearly dependent on the fracture porosity in a liquid-saturated reservoir. This assumption is accurate as long as the crack aspect ratio is less than 0.1 and the ratio of the P-wave velocity to the S-wave velocity is greater than 1.8 — two conditions that are satisfied in most naturally fractured reservoirs. The inversion then uses the fracture strike, the crack aspect ratio, and the ratio of the P-wave velocity to the S-wave velocity to invert the fracture porosity from the anisotropic AVO gradient after inferring the fluid type from the sign of the anisotropic AVO gradient. When I applied this method to a seismic line from the oil-saturated zone of the fractured Austin Chalk of southeast Texas, I found that the inversion gave a median fracture porosity of 0.21%, which is within the fracture-porosity range commonly measured in cores from the Austin Chalk.


Geophysics ◽  
1984 ◽  
Vol 49 (12) ◽  
pp. 2195-2195 ◽  
Author(s):  
L. R. Denham ◽  
R. A. R. Palmeira

One of the most widely reproduced figures for the partition of energy of a seismic wave at an interface between two media is from Tooley et al.’s 1965 paper. Recently we referred to this paper and noticed some anomalies in the curves shown there in Figure 11. We looked at the values of the curves at zero angle of incidence and noted that while the values of a P-wave velocity ratio of 2, 3, and 4 agree with the values given by the simplified formula {(V2−V1)/(V2+V1)}**2, the values shown for the P-wave velocity ratios less than 1 do not agree. For a ratio of 0.25, the coefficient at zero angle should be 0.36; it is shown as about 0.72. A ratio of 0.5 should give a coefficient of 0.11; 0.52 is shown. There are similar discrepancies for all the other ratios less than 1.


2021 ◽  
Vol 20 (3) ◽  
pp. 532-538
Author(s):  
Guanbao Li ◽  
Zhengyu Hou ◽  
Jingqiang Wang ◽  
Guangming Kan ◽  
Baohua Liu

2021 ◽  
Author(s):  
Dariusz Chlebowski ◽  
Zbigniew Burtan

AbstractA variety of geophysical methods and analytical modeling are applied to determine the rockburst hazard in Polish coal mines. In particularly unfavorable local conditions, seismic profiling, active/passive seismic tomography, as well as analytical state of stress calculating methods are recommended. They are helpful in verifying the reliability of rockburst hazard forecasts. In the article, the combined analysis of the state of stress determined by active seismic tomography and analytical modeling was conducted taking into account the relationship between the location of stress concentration zones and the level of rockburst hazard. A longwall panel in the coal seam 501 at a depth of ca.700 m in one of the hard coal mines operating in the Upper Silesian Coal Basin was a subject of the analysis. The seismic tomography was applied for the reconstruction of P-wave velocity fields. The analytical modeling was used to calculate the vertical stress states basing on classical solutions offered by rock mechanics. The variability of the P-wave velocity field and location of seismic anomaly in the coal seam in relation to the calculated vertical stress field arising in the mined coal seam served to assess of rockburst hazard. The applied methods partially proved their adequacy in practical applications, providing valuable information on the design and performance of mining operations.


Ultrasonics ◽  
2007 ◽  
Vol 46 (4) ◽  
pp. 341-348 ◽  
Author(s):  
S. Kahraman
Keyword(s):  
P Wave ◽  

2021 ◽  
pp. 228973
Author(s):  
Junhao Qu ◽  
Stephen S. Gao ◽  
Changzai Wang ◽  
Kelly H. Liu ◽  
Shaohui Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document