Numerical modeling of seismicity induced by fluid injection in naturally fractured reservoirs

Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. WC167-WC180 ◽  
Author(s):  
Xueping Zhao ◽  
R. Paul Young

The interaction between hydraulic and natural fractures is of great interest for the energy resource industry because natural fractures can significantly influence the overall geometry and effectiveness of hydraulic fractures. Microseismic monitoring provides a unique tool to monitor the evolution of fracturing around the treated rock reservoir, and seismic source mechanisms can yield information about the nature of deformation. We performed a numerical modeling study using a 2D distinct-element particle flow code ([Formula: see text]) to simulate realistic conditions and increase understanding of fracturing mechanisms in naturally fractured reservoirs, through comparisons with results of the geometry of hydraulic fractures and seismic source information (locations, magnitudes, and mechanisms) from both laboratory experiments and field observations. A suite of numerical models with fully dynamic and hydromechanical coupling was used to examine the interaction between natural and induced fractures, the effect of orientation of a preexisting fracture, the influence of differential stress, and the relationship between the fluid front, fracture tip, and induced seismicity. The numerical results qualitatively agree with the laboratory and field observations, and suggest possible mechanics for new fracture development and their interaction with a natural fracture (e.g., a tectonic fault). Therefore, the tested model could help in investigating the potential extent of induced fracturing in naturally fractured reservoirs, and in interpreting microseismic monitoring results to assess the effectiveness of a hydraulic fracturing project.

2015 ◽  
Vol 18 (02) ◽  
pp. 187-204 ◽  
Author(s):  
Fikri Kuchuk ◽  
Denis Biryukov

Summary Fractures are common features in many well-known reservoirs. Naturally fractured reservoirs include fractured igneous, metamorphic, and sedimentary rocks (matrix). Faults in many naturally fractured carbonate reservoirs often have high-permeability zones, and are connected to numerous fractures that have varying conductivities. Furthermore, in many naturally fractured reservoirs, faults and fractures can be discrete (rather than connected-network dual-porosity systems). In this paper, we investigate the pressure-transient behavior of continuously and discretely naturally fractured reservoirs with semianalytical solutions. These fractured reservoirs can contain periodically or arbitrarily distributed finite- and/or infinite-conductivity fractures with different lengths and orientations. Unlike the single-derivative shape of the Warren and Root (1963) model, fractured reservoirs exhibit diverse pressure behaviors as well as more than 10 flow regimes. There are seven important factors that dominate the pressure-transient test as well as flow-regime behaviors of fractured reservoirs: (1) fractures intersect the wellbore parallel to its axis, with a dipping angle of 90° (vertical fractures), including hydraulic fractures; (2) fractures intersect the wellbore with dipping angles from 0° to less than 90°; (3) fractures are in the vicinity of the wellbore; (4) fractures have extremely high or low fracture and fault conductivities; (5) fractures have various sizes and distributions; (6) fractures have high and low matrix block permeabilities; and (7) fractures are damaged (skin zone) as a result of drilling and completion operations and fluids. All flow regimes associated with these factors are shown for a number of continuously and discretely fractured reservoirs with different well and fracture configurations. For a few cases, these flow regimes were compared with those from the field data. We performed history matching of the pressure-transient data generated from our discretely and continuously fractured reservoir models with the Warren and Root (1963) dual-porosity-type models, and it is shown that they yield incorrect reservoir parameters.


2021 ◽  
Author(s):  
Nikita Vladislavovich Dubinya ◽  
Sergey Andreevich Tikhotskiy ◽  
Sergey Vladimirovich Fomichev ◽  
Sergey Vladimirovich Golovin

Abstract The paper presents an algorithm for the search of the optimal frilling trajectory for a deviated well which is applicable for development of naturally fractured reservoirs. Criterion for identifying the optimal trajectory is the feature of the current study – optimal trajectory is chosen from the perspective of maximizing the positive effect related to activation of natural fractures in well surrounding rock masses caused by changes of the rocks stress-strain state due to drilling process. Drilling of a deviated well is shown to lead to the process of natural fractures in the vicinity of the well becoming hydraulically conductive due to drilling. The paper investigates the main natural factors – tectonic stresses and fluid pressure – and drilling parameters – drilling trajectory and mud pressure – influencing the number and variety of natural fractures being activated due to drilling process. An algorithm of finding the optimal drilling parameters from the perspective of natural fractures activation is proposed as well. Different theoretical scenarios are considered to formulate the general recommendations on drilling trajectory choice according to estimations of stress state of the reservoir. These estimations can be provided based on results of three- and four-dimensional geomechanical modeling. Such modeling may be completed as well for constructing geomechanically consistent natural fracture model which can be used to optimize drilling trajectories during exploration and development of certain objects. The paper presents a detailed algorithm of constructing such fracture models and deviated wells trajectories optimization. The results presented in the paper and given recommendations may be used to enhance drilling efficiency for reservoirs characterized by considerable contribution of natural fractures into filtration processes.


2006 ◽  
Vol 9 (01) ◽  
pp. 50-60 ◽  
Author(s):  
Simon T. Chipperfield

Summary After-closure analysis (ACA) in homogeneous-matrix reservoirs provides a method for extracting critical reservoir information from pre-frac injection tests. This paper extends the theory and practice of ACA to identify the presence of productive natural fractures. Natural fractures are important to identify before conducting a stimulation treatment because their presence may require designs that differ from conventional matrix treatments. Literature shows that naturally fractured reservoirs are very susceptible to formation damage and require stimulation treatments to account for this issue. The historical problem, however, has been to confidently characterize the reservoirs pre-frac in terms of both the reservoir quality and the deliverability mechanism (fractures vs. matrix) before committing to these design specifications. This paper presents the results of a simulator used to analyze the mini-frac after-closure period to identify the presence of natural fractures. The simulation results are distilled into a field implementation methodology for determining the extent of natural fracturing and the formation reservoir quality. This methodology is also applied to a field case study to verify the practicality of the technique. Unlike previous mini-frac-analysis methods, this approach identifies natural fractures that are material to production and allows the engineer to distinguish them from "fissures" that are open only during injection and are not a production mechanism. Introduction Motivation for Identifying Natural Fractures. Identifying the presence of natural fractures is important for a broad range of reasons. On a field scale, realizing the presence of natural fractures can impact reserves estimation, initial well rates, production declines, and planned well locations. With respect to well completions, fractured reservoirs may necessitate a special stimulation approach. Because fractured reservoirs tend to produce from a relatively small reservoir volume (i.e., the fractures), these formations can be highly susceptible to damage (Cippolla et al. 1988). The literature shows that the use of foamed treatments (Cippolla et al. 1988), 100 mesh, and low gel loadings can be used to stimulate these reservoirs effectively. The literature also shows the disastrous results that can arise when damage-prevention steps are not taken (Cippolla et al. 1988). As a result, there is a definite need to identify natural fractures before a stimulation treatment so that the appropriate design decisions can be made. In the past, conventional well testing, such as pressure-buildup tests, has been used for determining the reservoir description. However, these techniques often prove costly both in terms of additional equipment requirements and delays in well on-line dates. In addition, conventional well testing may not be successful in low-permeability reservoirs because these wells may not flow at measurable rates before stimulation. These cost and reservoir limitations have forced the engineer to seek other low-cost methods for determining reservoir properties. One such option for acquiring these data is the use of a mini-frac injection test conducted before a stimulation treatment. The mini-frac analysis techniques available to provide estimates of the formation capacity (kh) and indications of the presence of natural fractures include preclosure and post-closure methods.


GeoArabia ◽  
2001 ◽  
Vol 6 (1) ◽  
pp. 27-42
Author(s):  
Stephen J. Bourne ◽  
Lex Rijkels ◽  
Ben J. Stephenson ◽  
Emanuel J.M. Willemse

ABSTRACT To optimise recovery in naturally fractured reservoirs, the field-scale distribution of fracture properties must be understood and quantified. We present a method to systematically predict the spatial distribution of natural fractures related to faulting and their effect on flow simulations. This approach yields field-scale models for the geometry and permeability of connected fracture networks. These are calibrated by geological, well test and field production data to constrain the distributions of fractures within the inter-well space. First, we calculate the stress distribution at the time of fracturing using the present-day structural reservoir geometry. This calculation is based on a geomechanical model of rock deformation that represents faults as frictionless surfaces within an isotropic homogeneous linear elastic medium. Second, the calculated stress field is used to govern the simulated growth of fracture networks. Finally, the fractures are upscaled dynamically by simulating flow through the discrete fracture network per grid block, enabling field-scale multi-phase reservoir simulation. Uncertainties associated with these predictions are considerably reduced as the model is constrained and validated by seismic, borehole, well test and production data. This approach is able to predict physically and geologically realistic fracture networks. Its successful application to outcrops and reservoirs demonstrates that there is a high degree of predictability in the properties of natural fracture networks. In cases of limited data, field-wide heterogeneity in fracture permeability can be modelled without the need for field-wide well coverage.


SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1518-1538 ◽  
Author(s):  
Xiangtong Yang ◽  
Yuanwei Pan ◽  
Wentong Fan ◽  
Yongjie Huang ◽  
Yang Zhang ◽  
...  

Summary The Keshen Reservoir is a naturally fractured, deep, tight sandstone gas reservoir under high tectonic stress. Because the reservoir matrix is very tight, the natural-fracture system is the main pathway for gas production. Meanwhile, stimulation is still required for most production wells to provide production rates that sufficiently compensate for the high cost of drilling and completing wells to access this deep reservoir. Large depletion (and related stress change) was expected during the course of the production of the field. The dynamic response of the reservoir and related risks, such as reduction of fracture conductivity, fault reactivation, and casing failure, would compromise the long-term productivity of the reservoir. To quantify the dynamic response of the reservoir and related risks, a 4D reservoir/geomechanics simulation was conducted for Keshen Reservoir by following an integrated work flow. The work started from systematic laboratory fracture-conductivity tests performed with fractured cores to measure conductivity vs. confining stress for both natural fractures and hydraulic fractures (with proppant placed in the fractures of the core samples). Natural-fracture modeling was conducted to generate a discrete-fracture network (DFN) to delineate spatial distribution of the natural-fracture system. In addition, hydraulic-fracture modeling was conducted to delineate the geometry of the hydraulic-fracture system for the stimulated wells. Then, a 3D geomechanical model was constructed by integrating geological, petrophysical, and geomechanical data, and both the DFN and hydraulic-fracture system were incorporated into the 3D geomechanical model. A 4D reservoir/geomechanics simulation was conducted through coupling with a reservoir simulator to predict variations of stress and strain of rock matrix as well as natural fractures and hydraulic fractures during field production. At each study-well location, a near-wellbore model was extracted from the full-field model, and casing and cement were installed to evaluate well integrity during production. The 4D reservoir/geomechanics simulation revealed that there would be a large reduction of conductivity for both natural fractures and hydraulic fractures, and some fractures with certain dip/dip azimuth will be reactivated during the course of field production. The induced-stress change will also compromise well integrity for those poorly cemented wellbores. The field-development plan must consider all these risks to ensure sustainable long-term production. The paper presents a 4D coupled geomechanics/reservoir-simulation study applied to a high-pressure/high-temperature (HP/HT) naturally fractured reservoir, which has rarely been published previously. The study adapted several new techniques to quantify the mechanical response of both natural fractures and hydraulic fractures, such as using laboratory tests to measure stress sensitivity of natural fractures, integrating DFN and hydraulic-fracture systems into 4D geomechanics simulation, and evaluating well integrity on both the reservoir scale and the near-wellbore scale.


2015 ◽  
Vol 18 (04) ◽  
pp. 463-480 ◽  
Author(s):  
Jianlei Sun ◽  
David Schechter

Summary Multistage hydraulically fractured wells are applied widely to produce unconventional resource plays. In naturally fractured reservoirs, hydraulic-fracture treatments may induce complex-fracture geometries that one cannot model accurately and efficiently with Cartesian and corner-point grid systems or standard dual-porosity approaches. The interaction of hydraulic and naturally occurring fractures almost certainly plays a role in ultimate well and reservoir performance. Current simulation models are unable to capture the complexity of this interaction. Generally speaking, our ability to detect and characterize fracture systems is far beyond our capability of modeling complex natural-fracture systems. To evaluate production performance in these complex settings with numerical simulation, fracture networks require advanced meshing and domain-discretization techniques. This paper investigates these issues by developing natural-fracture networks with fractal-based techniques. After a fracture network is developed, we demonstrate the feasibility of gridding complex natural-fracture behavior with optimization-based unstructured meshing algorithms. Then we can demonstrate that one can simulate natural-fracture complexities such as variable aperture, spacing, length, and strike. This new approach is a significant step beyond the current method of dual-porosity simulation that essentially negates the sophisticated level of fracture characterization pursued by many operators. We use currently established code for fractal discrete-fracture-network (FDFN) models to build realizations of naturally fractured reservoirs in terms of stochastic fracture networks. From outcrop, image-log, and core analysis, it is possible to extract fracture fractal parameters pertaining to aperture, spacing, and length distribution, including center distribution as well as a fracture strike. Then these parameters are used as input variables for the FDFN code to generate multiple realizations of fracture networks mimicking fracture clustering and randomly distributed natural fractures. After incorporating hydraulic fractures, complex-fracture networks are obtained for further reservoir-domain discretization. To discretize the complex-fracture networks, a new mesh-generation approach is developed to conform to nonorthogonal and low-angle intersections of extensively clustered discrete-fracture networks with nonuniform aperture distribution. Optimization algorithms are adopted to reduce highly skewed cells, and to ensure good mesh quality around fracture tips, intersections, and regions of extensive fracture clustering. Moreover, local grid refinement is implemented with a predefined distance function to control cell sizes and shapes around and far away from fractures. Natural-fracture spacing, length, strike, and aperture distribution are explicitly gridded, thus introducing a new simulation approach that is far superior to dual-porosity simulation. Finally, initial sensitivity studies are performed to demonstrate both the capability of the optimization-based unstructured meshing algorithms, and the effect of aforementioned natural-fracture parameters on well performance. This study demonstrates how to incorporate a fractal-based characterization approach into the current work flow for simulating unconventional reservoirs, and most importantly solves several issues such as nonorthogonal intersections, extensive clustering, and nonuniform aperture distribution associated with domain discretization with unstructured grids for complex-fracture networks. The proposed meshing techniques for complex fracture networks can be easily implemented in existing preprocessing, unstructured mesh generators. The sensitivity study and the simulation runs demonstrate the importance of fracture characterization as well as uncertainties associated with naturally fractured reservoirs on well-production performance.


Sign in / Sign up

Export Citation Format

Share Document