Stable P-wave modeling for reverse-time migration in tilted TI media

Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. S65-S75 ◽  
Author(s):  
Eric Duveneck ◽  
Peter M. Bakker

We present an approach for P-wave modeling in inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media), suitable for anisotropic reverse-time migration. The proposed approach is based on wave equations derived from first principles — the equations of motion and Hooke’s law — under the acoustic TI approximation. Consequently, no assumptions are made about the spatial variation of medium parameters. A rotation of the stress and strain tensors to a local coordinate system, aligned with the TI-symmetry axis, makes it possible to benefit from the simple and sparse form of the TI-elastic tensor in that system. The resulting wave equations can be formulated either as a set of five first-order or as a set of two second-order partial differential equations. For the constant-density case, the second-order TTI wave equations involve mixed and nonmixed second-order spatial derivatives with respect to global, nonrotated coordinates. We propose a numerical implementation of these equations using high-order centered finite differences. To minimize modeling artifacts related to the use of centered first-derivative operators, we use discrete second-derivative operators for the nonmixed second-order spatial derivatives and repeated discrete first-derivative operators for the mixed derivatives. Such a combination of finite-difference operators leads to a stable wave propagator, provided that the operators are designed properly. In practice, stability is achieved by slightly weighting down terms that contain mixed derivatives. This has a minor, practically negligible, effect on the kinematics of wave propagation. The stability of the presented scheme in inhomogeneous TTI models with rapidly varying anisotropic symmetry axis direction is demonstrated with numerical examples.

Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. S139-S150 ◽  
Author(s):  
Vladimir Li ◽  
Ilya Tsvankin ◽  
Tariq Alkhalifah

Extended images obtained from reverse time migration (RTM) contain information about the accuracy of the velocity field and subsurface illumination at different incidence angles. Here, we evaluate the influence of errors in the anisotropy parameters on the shape of the residual moveout (RMO) in P-wave RTM extended images for VTI (transversely isotropic with a vertical symmetry axis) media. Using the actual spatial distribution of the zero-dip NMO velocity ([Formula: see text]), which could be approximately estimated by conventional techniques, we analyze the extended images obtained with distorted fields of the parameters [Formula: see text] and [Formula: see text]. Differential semblance optimization (DSO) and stack-power estimates are employed to study the sensitivity of focusing to the anisotropy parameters. We also build angle gathers to facilitate interpretation of the shape of RMO in the extended images. The results show that the signature of [Formula: see text] is dip-dependent, whereas errors in [Formula: see text] cause defocusing only if that parameter is laterally varying. Hence, earlier results regarding the influence of [Formula: see text] and [Formula: see text] on reflection moveout and migration velocity analysis remain generally valid in the extended image space for complex media. The dependence of RMO on errors in the anisotropy parameters provides essential insights for anisotropic wavefield tomography using extended images.


Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Yingming Qu ◽  
Yixin Wang ◽  
Zhenchun Li ◽  
Chang Liu

Seismic wave attenuation caused by subsurface viscoelasticity reduces the quality of migration and the reliability of interpretation. A variety of Q-compensated migration methods have been developed based on the second-order viscoacoustic quasidifferential equations. However, these second-order wave-equation-based methods are difficult to handle with density perturbation and surface topography. In addition, the staggered grid scheme, which has an advantage over the collocated grid scheme because of its reduced numerical dispersion and enhanced stability, works in first-order wave-equation-based methods. We have developed a Q least-squares reverse time migration method based on the first-order viscoacoustic quasidifferential equations by deriving Q-compensated forward-propagated operators, Q-compensated adjoint operators, and Q-attenuated Born modeling operators. Besides, our method using curvilinear grids is available even when the attenuating medium has surface topography and can conduct Q-compensated migration with density perturbation. The results of numerical tests on two synthetic and a field data sets indicate that our method improves the imaging quality with iterations and produces better imaging results with clearer structures, higher signal-to-noise ratio, higher resolution, and more balanced amplitude by correcting the energy loss and phase distortion caused by Q attenuation. It also suppresses the scattering and diffracted noise caused by the surface topography.


2015 ◽  
Author(s):  
Jun Mu ◽  
Bing Tang ◽  
Sheng Xu ◽  
Hongbo Zhou ◽  
Aaron DeNosaquo

Geophysics ◽  
1993 ◽  
Vol 58 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Zhengxin Dong ◽  
George A. McMechan

A three‐dimensional (3-D) prestack reverse‐time migration algorithm for common‐source P‐wave data from anisotropic media is developed and illustrated by application to synthetic data. Both extrapolation of the data and computation of the excitation‐time imaging condition are implemented using a second‐order finite‐ difference solution of the 3-D anisotropic scalar‐wave equation. Poorly focused, distorted images are obtained if data from anisotropic media are migrated using isotropic extrapolation; well focused, clear images are obtained using anisotropic extrapolation. A priori estimation of the 3-D anisotropic velocity distribution is required. Zones of anomalous, directionally dependent reflectivity associated with anisotropic fracture zones are detectable in both the 3-D common‐ source data and the corresponding migrated images.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. R149-R159 ◽  
Author(s):  
Xinfa Zhu ◽  
George A. McMechan

Near- and postcritical (wide-angle) reflections provide the potential for velocity and density inversion because of their large amplitudes and phase-shifted waveforms. We tested using phase variation with angle (PVA) data in addition to, or instead of, amplitude variation with angle (AVA) data for elastic inversion. Accurate PVA test data were generated using the reflectivity method. Two other forward modeling methods were also investigated, including plane-wave and spherical-wave reflection coefficients. For a two half-space model, linearized least squares was used to invert PVA and AVA data for the P-wave velocity, S-wave velocity, and the density of the lower space and the S-wave velocity of the upper space. Inversion tests showed the feasibility and robustness of PVA inversion. A reverse-time migration test demonstrated better preservation of PVA information than AVA information during wavefield propagation through a layered overburden. Phases of deeper reflections were less affected than amplitudes by the transmission losses, which makes the results of PVA inversion more accurate than AVA inversion in multilayered media. PVA brings useful information to the elastic inversion of wide-angle reflections.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. C295-C307 ◽  
Author(s):  
Pengfei Yu ◽  
Jianhua Geng ◽  
Chenlong Wang

Quasi-P (qP)-wavefield separation is a crucial step for elastic P-wave imaging in anisotropic media. It is, however, notoriously challenging to quickly and accurately obtain separated qP-wavefields. Based on the concepts of the trace of the stress tensor and the pressure fields defined in isotropic media, we have developed a new method to rapidly separate the qP-wave in a transversely isotropic medium with a vertical symmetry axis (VTI) by synthesized pressure from ocean-bottom seismic (OBS) data as a preprocessing step for elastic reverse time migration (ERTM). Another key aspect of OBS data elastic wave imaging is receiver-side 4C records back extrapolation. Recent studies have revealed that receiver-side tensorial extrapolation in isotropic media with ocean-bottom 4C records can sufficiently suppress nonphysical waves produced during receiver-side reverse time wavefield extrapolation. Similarly, the receiver-side 4C records tensorial extrapolation was extended to ERTM in VTI media in our studies. Combining a separated qP-wave by synthesizing pressure and receiver-side wavefield reverse time tensorial extrapolation with the crosscorrelation imaging condition, we have developed a robust, fast, flexible, and elastic imaging quality improved method in VTI media for OBS data.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. S399-S408 ◽  
Author(s):  
Yunyue Elita Li ◽  
Yue Du ◽  
Jizhong Yang ◽  
Arthur Cheng ◽  
Xinding Fang

Elastic wave imaging has been a significant challenge in the exploration industry due to the complexities in wave physics and numerical implementation. We have separated the governing equations for P- and S-wave propagation without the assumptions of homogeneous Lamé parameters to capture the mode conversion between the two body waves in an isotropic, constant-density medium. The resulting set of two coupled second-order equations for P- and S-potentials clearly demonstrates that mode conversion only occurs at the discontinuities of the shear modulus. Applying the Born approximation to the new equations, we derive the PP, PS, SP, and SS imaging conditions from the first gradients of waveform matching objective functions. The resulting images are consistent with the physical perturbations of the elastic parameters, and, hence, they are automatically free of the polarity reversal artifacts in the converted images. When implementing elastic reverse time migration (RTM), we find that scalar wave equations can be used to back propagate the recorded P-potential, as well as individual components in the vector field of the S-potential. Compared with conventional elastic RTM, the proposed elastic RTM implementation using acoustic propagators not only simplifies the imaging condition, it but also reduces the computational cost and the artifacts in the images. We have determined the accuracy of our method using 2D and 3D numerical examples.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. R827-R844 ◽  
Author(s):  
Zongcai Feng ◽  
Gerard Schuster

We present a quasi-elastic wave equation as a function of the pressure variable, which can accurately model PP reflections with elastic amplitude variation with offset effects under the first-order Born approximation. The kinematic part of the quasi-elastic wave equation accurately models the propagation of P waves, whereas the virtual-source part, which models the amplitudes of reflections, is a function of the perturbations of density and Lamé parameters [Formula: see text] and [Formula: see text]. The quasi-elastic wave equation generates a scattering radiation pattern that is exactly the same as that for the elastic wave equation, and only requires the solution of two acoustic wave equations for each shot gather. This means that the quasi-elastic wave equation can be used for true-amplitude linearized waveform inversion (also known as least-squares reverse time migration) of elastic PP reflections, in which the corresponding misfit gradients are with respect to the perturbations of density and the P- and S-wave impedances. The perturbations of elastic parameters are iteratively updated by minimizing the [Formula: see text]-norm of the difference between the recorded PP reflections and the predicted pressure data modeled from the quasi-elastic wave equation. Numerical tests on synthetic and field data indicate that true-amplitude linearized waveform inversion using the quasi-elastic wave equation can account for the elastic PP amplitudes and provide a robust estimate of the perturbations of P- and S-wave impedances and, in some cases, the density. In addition, true-amplitude linearized waveform inversion provides images with a wider bandwidth and fewer artifacts because the PP amplitudes are accurately explained. We also determine the 2D scalar quasi-elastic wave equation for P-SV reflections and the 3D vector equation for PS reflections.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. S113-S125 ◽  
Author(s):  
Xiyan Zhou ◽  
Xu Chang ◽  
Yibo Wang ◽  
Zhenxing Yao

To eliminate crosstalk within the imaging results of elastic reverse time migration (ERTM), we can separate the coupled P- and S-waves from the forward source wavefield and the backpropagated receiver wavefield. The P- and S-wave decoupling method retains the original phase, amplitude, and physical meaning in the separated wavefields. Thus, it is a vital wavefield separation method in ERTM. However, because these decomposed wavefields are vectors, we could consider how to retrieve scalar images that reveal the real reflectivity of the subsurface. For this purpose, we derive a scalar P-wave equation from the velocity-stress relationship for PP imaging. The phase and amplitude of this scalar P-wave are consistent with the scalarized P-wave. Therefore, this scalar P-wave can be exploited to perform PP imaging directly, with the imaging result retaining the amplitude characteristics. For PS imaging, it is difficult to calculate a dynamic preserved scalar S-wave. However, we have developed a scalar PS imaging method that divides the PS image into energy and sign components according to the geometric relationship between the wavefield vibration and propagation directions. The energy is calculated through the amplitude crosscorrelation of the forward P-wave and backpropagated S-wave from the receivers. The sign is obtained from the dot product of the forward P-wave vector and the backpropagated S-wave vector. These PP and PS imaging methods are suitable for 2D and 3D isotropic media and maintain the correct amplitude information while eliminating polarity-reversal phenomena. Several numerical models are used to verify the robustness and effectiveness of our method.


Sign in / Sign up

Export Citation Format

Share Document