3D diffraction imaging with Kirchhoff time migration using vertical traveltime difference gathers

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. S555-S566 ◽  
Author(s):  
Zhengwei Li ◽  
Jianfeng Zhang

We have built a vertical traveltime difference (VTD) gather to image diffractions in the 3D time domain. This significantly improves detection of small-scale faults and heterogeneities in 3D seismic data. The VTD gather is obtained using 3D Kirchhoff prestack time migration based on the traveltime-related inline and crossline dip angles, which is closely related to the 2D dip-angle gather. In VTD gathers, diffraction events exhibit flattening, whereas reflection events have convex upward-sloping shapes. Different from the 2D dip-angle gather, Fresnel zone-related specular reflections are precisely focused on the given regions over all offsets and azimuths, thus leaving more diffraction energy after muting. To image linear diffractors, such as faults in three dimensions, the VTD gather can be extended into two dimensions by adding a dip-azimuth dimension. This makes it possible to correct phases of edge diffractions and detect the orientations of the linear diffractors. The memory requirement of the VTD or VTD plus azimuth gathers is much less than that of the 2D dip-angle gathers. We can store the gathers at each lateral position and then correct the phase and enhance the weak diffractions in 3D cases. Synthetic and field data tests demonstrate the effectiveness of our 3D diffraction imaging method.

2019 ◽  
Vol 220 (3) ◽  
pp. 1569-1584
Author(s):  
Zhengwei Li ◽  
Jianfeng Zhang

SUMMARY Accurate identification of the locations and orientations of small-scale faults plays an important role in seismic interpretation. We have developed a 3-D migration scheme that can image small-scale faults using diffractions in time. This provides a resolution beyond the classical Rayleigh limit of half a wavelength in detecting faults. The scheme images weak diffractions by building a modified dip-angle gather, which is obtained by replacing the two dip angles dimensions of the conventional 2-D dip-angle gather with tangents of the dip angles. We build the modified 2-D dip-angle gathers by calculating the tangents of dip angles following 3-D prestack time migration (PSTM). In the resulting modified 2-D dip-angle gathers, the Fresnel zone related to the specular reflection exhibits an ellipse. Comparing with the conventional 2-D dip-angle gather, diffraction event related a fault exhibits a straight cylinder shape with phase-reversal across a line related the orientation of the fault. As a result, we can not only mute the Fresnel zones related to reflections, correct phase for edge diffractions and obtain the image of faults, but also detect the orientations of 3-D faults using the modified dip-angle gathers. Like the conventional dip-angle gathers, the modified dip-angle gathers can also be used to image diffractions resulting from other sources. 3-D Field data tests demonstrate the validity of the proposed diffraction imaging scheme.


Geophysics ◽  
2021 ◽  
pp. 1-72
Author(s):  
Parsa Bakhtiari Rad ◽  
Craig J. Hickey

Seismic diffractions carry the signature of near-surface high-contrast anomalies and need to be extracted from the data to complement the reflection processing and other geophysical techniques. Since diffractions are often masked by reflections, surface waves and noise, a careful diffraction separation is required as a first step for diffraction imaging. A multiparameter time-imaging method is employed to separate near-surface diffractions. The implemented scheme makes use of the wavefront attributes that are reliable fully data-derived processing parameters. To mitigate the effect of strong noise and wavefield interference in near-surface data, the proposed workflow incorporates two wavefront-based parameters, dip angle and coherence, as additional constraints. The output of the diffraction separation is a time trace-based stacked section that provides the basis for further analysis and applications such as time migration. To evaluate the performance of the proposed wavefront-based workflow, it is applied to two challenging field data sets that were collected over small culverts in very near-surface soft soil environments. The results of the proposed constrained workflow and the existing unconstrained approach are presented and compared. The proposed workflow demonstrates superiority over the existing method by attenuating more reflection and noise, leading to improved diffraction separation. The abundance of unmasked diffractions reveal that the very near-surface is highly scattering. Time migration is carried out to enhance the anomaly detection by focusing of the isolated diffractions. Although strong diffractivity is observed at the approximate location of the targets, there are other diffracting zones observed in the final sections that might bring uncertainties for interpretation.


Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. S23-S33 ◽  
Author(s):  
Jianfeng Zhang ◽  
Jiangjie Zhang

We have developed a migration scheme that can image weak diffractions in time. This significantly contributes to conventional interpretation in detecting small-scale faults and heterogeneities. The proposed scheme images diffractions using the shot and opening-angle gathers generated by prestack time migration (PSTM). Here, the shot and opening-angle gather represents a 2D migrated gather in terms of shot locations and opening angles between the incident- and scattered-rays. We muted the Fresnel zones related to reflections, corrected phases of diffractions, and enhanced diffractions in the migrated gathers. As a result, the proposed diffraction PSTM can image diffractions with and without phase-reversal. Moreover, the weak diffractions tangent to reflections can be clearly imaged. Diffraction PSTM can update migration velocities according to behaviors of reflection and diffraction events in the migrated gathers by scanning, thus overcoming a crucial problem in diffraction imaging. The reflector dips used in diffraction PSTM are obtained by picking the angles related to reflections in the shot and opening-angle gathers for a partial migration. Synthetic and field data tests demonstrate the validity of diffraction PSTM.


2019 ◽  
Vol 17 (2) ◽  
pp. 339-356
Author(s):  
Chuangjian Li ◽  
Jingtao Zhao ◽  
Suping Peng ◽  
Xiaoqin Cui ◽  
Peng Lin

Abstract Seismic diffractions are ideal carriers of information on small-scale, discontinuous objects and can therefore be used to detect these geologic objects. However, recognizing diffractions is difficult because specular reflection with strong energy masks the weak diffraction. In this study, we propose a diffraction separation and imaging method based on a Mahalanobis-based and phase-based attenuation function used to modify the Kirchhoff migration formula in the full-azimuth dip-angle domain. In this domain, reflections are restricted to within the first Fresnel zone and are distributed in the vicinity of the stationary point, while diffractions are located across a wide range of azimuth and dip angles. Synthetic and field data applications suggest that this new method can effectively separate and image diffractions. The results also demonstrate the efficiency of the new method in clarifying subsurface small-scale objects, which can provide finer information about these structures for seismic interpretation.


2020 ◽  
Author(s):  
Jonathan Ford ◽  
Roger Urgeles ◽  
Eulàlia Gràcia ◽  
Angelo Camerlenghi

<p>Outcrop examples of mass-transport complexes (MTCs) often show a complex internal fabric which reflects disaggregation, deformation and entrainment that occurred during transport and emplacement. This can include intense folding, included blocks of substratum and internal shear zones. Seismic reflection images often cannot properly image this internal fabric as the scale of such structure is usually below the effective resolution. This can limit seismic interpretation to characterising only the overall morphology of the deposits (the top and basal reflectors).</p><p>Seismic reflections are primarily generated by smooth, laterally continuous interfaces. Discontinuities at or below the scale of the seismic wavelength instead generate seismic diffractions (“diffraction hyperbolae” in unmigrated images). Diffractions are often ignored during seismic processing as they are generally lower in amplitude than reflections, though they do not suffer from the same lateral resolution limit as reflections so are potentially sensitive to smaller scale structure. We suggest that the discontinuous internal fabric of MTCs will generate a significant amount of diffraction energy relative to unfailed sediments.</p><p>The main goal of this study is to use diffraction imaging to image the small-scale, heterogeneous internal fabric of MTCs. We demonstrate this using two high-resolution, multi-channel 2-D marine seismic profiles (3.125 m CMP spacing, 500 m maximum offset) acquired in 2018 and 2019 as part of the INSIGHT project to investigate submarine geohazards in the Gulf of Cadiz. Profile 1 intersects the Marques de Pombal reverse fault and shows a series of stacked MTCs (~1 s TWTT from top to bottom) in the footwall, thought to be related to episodic fault activity. Profile 2 is located in the Portimão Bank area and contains two large MTCs thought to be related to the mobilisation of a salt diapir. The diffraction imaging method proceeds as i) dip-guided plane-wave destruction to separate reflected and diffracted wavefields; ii) velocity analysis by cascaded constant velocity migrations of the diffraction wavefield; iii) post-stack Kirchhoff time migration of the diffraction wavefield.</p><p>The unmigrated profiles show that the MTC bodies do generate more internal diffractions than the surrounding unfailed sediments. We also observe large contributions of diffraction energy from the rugose top and base of the MTCs, the rugose top salt interface and from faults within the unfailed sediments. The migrated diffraction images reveal distinct internal structure, thought to represent rafted blocks, ramps and both extensional and compressional faulting. The envelope of the diffraction image is used as an overlay on the conventional reflection image to guide interpretation and highlight potential diffractors. This allows interpretation of thin MTCs and improved delineation of their lateral extent (runout) above conventional reflection images.</p><p>Diffraction imaging has previously been used to image heterogeneous geology such as fracture networks, channel systems and karst topography. Here we apply the technique to study the internal fabric of MTCs. The resulting images resolve small-scale internal structure that is not well resolved by conventional reflection images. Such structures can be used as kinematic indicators to constrain flow direction and emplacement dynamics, which inform the geohazard potential of future subaqueous mass-movements.</p>


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. S1-S10 ◽  
Author(s):  
Jingtao Zhao ◽  
Caixia Yu ◽  
Suping Peng ◽  
Chuangjian Li

Seismic weak responses from subsurface small-scale geologic discontinuities or inhomogeneities are encoded in 3D diffractions. Separating weak diffractions from a strong reflection background is a difficult problem for diffraction imaging, especially for the 3D case when they are tangent to or interfering with each other. Most conventional diffraction separation methods ignore the azimuth discrepancy between reflections and diffractions when suppressing reflections. In fact, the reflections associated with a specific pair of azimuth-dip angle possess sparse characteristics, and the diffractions adhering to Huygens’ principle behave as low-rank components. Therefore, we have developed a 3D low-rank diffraction imaging method that uses the Mahalanobis-based low-rank and sparse matrix decomposition method for separating and imaging 3D diffractions in the azimuth-dip angle image matrix. The advantages of our 3D diffraction imaging method not only includes the handling of interfering events but also includes ensuring a better protection of weak diffractions. The numerical experiment illustrates the good performance of our method in imaging small-scale discontinuities and inhomogeneities. The field data application of carbonate reservoirs further confirms its potential value in resolving the masked small-scale cavities that can provide storage spaces and a migration pathway for petroleum.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. S317-S331 ◽  
Author(s):  
Jianfeng Zhang ◽  
Zhengwei Li ◽  
Linong Liu ◽  
Jin Wang ◽  
Jincheng Xu

We have improved the so-called deabsorption prestack time migration (PSTM) by introducing a dip-angle domain stationary-phase implementation. Deabsorption PSTM compensates absorption and dispersion via an actual wave propagation path using effective [Formula: see text] parameters that are obtained during migration. However, noises induced by the compensation degrade the resolution gained and deabsorption PSTM requires more computational effort than conventional PSTM. Our stationary-phase implementation improves deabsorption PSTM through the determination of an optimal migration aperture based on an estimate of the Fresnel zone. This significantly attenuates the noises and reduces the computational cost of 3D deabsorption PSTM. We have estimated the 2D Fresnel zone in terms of two dip angles through building a pair of 1D migrated dip-angle gathers using PSTM. Our stationary-phase QPSTM (deabsorption PSTM) was implemented as a two-stage process. First, we used conventional PSTM to obtain the Fresnel zones. Then, we performed deabsorption PSTM with the Fresnel-zone-based optimized migration aperture. We applied stationary-phase QPSTM to a 3D field data. Comparison with synthetic seismogram generated from well log data validates the resolution enhancements.


Geophysics ◽  
1996 ◽  
Vol 61 (1) ◽  
pp. 264-272 ◽  
Author(s):  
Arthur E. Barnes

The ideas of 1-D complex seismic trace analysis extend readily to two dimensions. Two‐dimensional instantaneous amplitude and phase are scalars, and 2-D instantaneous frequency and bandwidth are vectors perpendicular to local wavefronts, each defined by a magnitude and a dip angle. The two independent measures of instantaneous dip correspond to instantaneous apparent phase velocity and group velocity. Instantaneous phase dips are aliased for steep reflection dips following the same rule that governs the aliasing of 2-D sinusoids in f-k space. Two‐dimensional frequency and bandwidth are appropriate for migrated data, whereas 1-D frequency and bandwidth are appropriate for unmigrated data. The 2-D Hilbert transform and 2-D complex trace attributes can be efficiently computed with little more effort than their 1-D counterparts. In three dimensions, amplitude and phase remain scalars, but frequency and bandwidth are 3-D vectors with magnitude, dip angle, and azimuth.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. H1-H12 ◽  
Author(s):  
Hemin Yuan ◽  
Mahboubeh Montazeri ◽  
Majken C. Looms ◽  
Lars Nielsen

Diffractions caused by, e.g., faults, fractures, and small-scale heterogeneity localized near the surface are often used in ground-penetrating radar (GPR) reflection studies to constrain the subsurface velocity distribution using simple hyperbola fitting. Interference with reflected energy makes the identification of diffractions difficult. We have tailored and applied a diffraction imaging method to improve imaging for surface reflection GPR data. Based on a plane-wave destruction algorithm, the method can separate reflections from diffractions. Thereby, a better identification of diffractions facilitates an improved determination of GPR wave velocities and an optimized migration result. We determined the potential of this approach using synthetic and field data, and, for the field study, we also compare the estimated velocity structure with crosshole GPR results. For the field data example, we find that the velocity structure estimated using the diffraction-based process correlates well with results from crosshole GPR velocity estimation. Such improved velocity estimation may have important implications for using surface reflection GPR to map, e.g., porosity for fully saturated media or soil moisture changes in partially saturated media because these physical properties depend on the dielectric permittivity and thereby also the GPR wave velocity.


Sign in / Sign up

Export Citation Format

Share Document