Residual-driven online multiscale methods for acoustic-wave propagation in 2D heterogeneous media

Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. T69-T77
Author(s):  
Eric T. Chung ◽  
Yalchin Efendiev ◽  
Richard L. Gibson ◽  
Wing Tat Leung

Common applications, such as geophysical exploration, reservoir characterization, and earthquake quantification, in modeling and inversion aim to apply numerical simulations of elastic- or acoustic-wave propagation to increasingly large and complex models, which can provide more realistic and useful results. However, the computational cost of these simulations increases rapidly, which makes them inapplicable to certain problems. We apply a newly developed multiscale finite-element algorithm, the generalized multiscale finite-element method (GMsFEM), to address this challenge in simulating acoustic-wave propagation in heterogeneous media. The wave equation is solved on a coarse grid using multiscale basis functions that are chosen from the most dominant modes among those computed by solving relevant local problems on a fine-grid representation of the model. These multiscale basis functions are computed once in an off-line stage prior to the simulation of wave propagation. Because these calculations are localized to individual coarse cells, one can improve the accuracy of multiscale methods by revising and updating these basis functions during the simulation. These updated bases are referred to as online basis functions. This is a significant extension of previous applications of similar online basis functions to time-independent problems. We tested our new algorithm and numerical results for acoustic-wave propagation using the acoustic Marmousi model. Long-term developments have a strong potential to enhance inversion algorithms because the basis functions need not be regenerated everywhere. In particular, recomputation of basis functions is required only at regions in which the model is updated. Thus, our method allows faster simulations for repeated calculations, which are needed for inversion purpose.

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. T61-T75 ◽  
Author(s):  
Richard L. Gibson ◽  
Kai Gao ◽  
Eric Chung ◽  
Yalchin Efendiev

Conventional finite-difference methods produce accurate solutions to the acoustic and elastic wave equation for many applications, but they face significant challenges when material properties vary significantly over distances less than the grid size. This challenge is likely to occur in reservoir characterization studies, because important reservoir heterogeneity can be present on scales of several meters to ten meters. Here, we describe a new multiscale finite-element method for simulating acoustic wave propagation in heterogeneous media that addresses this problem by coupling fine- and coarse-scale grids. The wave equation is solved on a coarse grid, but it uses basis functions that are generated from the fine grid and allow the representation of the fine-scale variation of the wavefield on the coarser grid. Time stepping also takes place on the coarse grid, providing further speed gains. Another important property of the method is that the basis functions are only computed once, and time savings are even greater when simulations are repeated for many source locations. We first present validation results for simple test models to demonstrate and quantify potential sources of error. These tests show that the fine-scale solution can be accurately approximated when the coarse grid applies a discretization up to four times larger than the original fine model. We then apply the multiscale algorithm to simulate a complete 2D seismic survey for a model with strong, fine-scale scatterers and apply standard migration algorithms to the resulting synthetic seismograms. The results again show small errors. Comparisons to a model that is upscaled by averaging densities on the fine grid show that the multiscale results are more accurate.


2011 ◽  
Vol 03 (01n02) ◽  
pp. 251-268 ◽  
Author(s):  
ERIC T. CHUNG ◽  
YALCHIN EFENDIEV ◽  
RICHARD L. GIBSON

Seismic data are routinely used to infer in situ properties of earth materials on many scales, ranging from global studies to investigations of surficial geological formations. While inversion and imaging algorithms utilizing these data have improved steadily, there are remaining challenges that make detailed measurements of the properties of some geologic materials very difficult. For example, the determination of the concentration and orientation of fracture systems is prohibitively expensive to simulate on the fine grid and, thus, some type of coarse-grid simulations are needed. In this paper, we describe a new multiscale finite element algorithm for simulating seismic wave propagation in heterogeneous media. This method solves the wave equation on a coarse grid using multiscale basis functions and a global coupling mechanism to relate information between fine and coarse grids. Using a mixed formulation of the wave equation and staggered discontinuous basis functions, the proposed multiscale methods have the following properties. • The total wave energy is conserved. • Mass matrix is diagonal on a coarse grid and explicit energy-preserving time discretization does not require solving a linear system at each time step. • Multiscale basis functions can accurately capture the subgrid variations of the solution and the time stepping is performed on a coarse grid. We discuss various subgrid capturing mechanisms and present some preliminary numerical results.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 298
Author(s):  
Aleksei Tyrylgin ◽  
Maria Vasilyeva ◽  
Dmitry Ammosov ◽  
Eric T. Chung ◽  
Yalchin Efendiev

In this paper, we consider the poroelasticity problem in fractured and heterogeneous media. The mathematical model contains a coupled system of equations for fluid pressures and displacements in heterogeneous media. Due to scale disparity, many approaches have been developed for solving detailed fine-grid problems on a coarse grid. However, some approaches can lack good accuracy on a coarse grid and some corrections for coarse-grid solutions are needed. In this paper, we present a coarse-grid approximation based on the generalized multiscale finite element method (GMsFEM). We present the construction of the offline and online multiscale basis functions. The offline multiscale basis functions are precomputed for the given heterogeneity and fracture network geometry, where for the construction, we solve a local spectral problem and use the dominant eigenvectors (appropriately defined) to construct multiscale basis functions. To construct the online basis functions, we use current information about the local residual and solve coupled poroelasticity problems in local domains. The online basis functions are used to enrich the offline multiscale space and rapidly reduce the error using residual information. Only with appropriate offline coarse-grid spaces can one guarantee a fast convergence of online methods. We present numerical results for poroelasticity problems in fractured and heterogeneous media. We investigate the influence of the number of offline and online basis functions on the relative errors between the multiscale solution and the reference (fine-scale) solution.


Computation ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 58
Author(s):  
Valentin Alekseev ◽  
Qili Tang ◽  
Maria Vasilyeva ◽  
Eric T. Chung ◽  
Yalchin Efendiev

In this paper, we consider a coupled system of equations that describes simplified magnetohydrodynamics (MHD) problem in perforated domains. We construct a fine grid that resolves the perforations on the grid level in order to use a traditional approximation. For the solution on the fine grid, we construct approximation using the mixed finite element method. To reduce the size of the fine grid system, we will develop a Mixed Generalized Multiscale Finite Element Method (Mixed GMsFEM). The method differs from existing approaches and requires some modifications to represent the flow and magnetic fields. Numerical results are presented for a two-dimensional model problem in perforated domains. This model problem is a special case for the general 3D problem. We study the influence of the number of multiscale basis functions on the accuracy of the method and show that the proposed method provides a good accuracy with few basis functions.


Sign in / Sign up

Export Citation Format

Share Document