scholarly journals Coherent noise suppression by learning and analyzing the morphology of the data

Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. V397-V411 ◽  
Author(s):  
Pierre Turquais ◽  
Endrias G. Asgedom ◽  
Walter Söllner

We have developed a method for suppressing coherent noise from seismic data by using the morphological differences between the noise and the signal. This method consists of three steps: First, we applied a dictionary learning method on the data to extract a redundant dictionary in which the morphological diversity of the data is stored. Such a dictionary is a set of unit vectors called atoms that represent elementary patterns that are redundant in the data. Because the dictionary is learned on data contaminated by coherent noise, it is a mix of atoms representing signal patterns and atoms representing noise patterns. In the second step, we separate the noise atoms from the signal atoms using a statistical classification. Hence, the learned dictionary is divided into two subdictionaries: one describing the morphology of the noise and the other one describing the morphology of the signal. Finally, we separate the seismic signal and the coherent noise via morphological component analysis (MCA); it uses sparsity with respect to the two subdictionaries to identify the signal and the noise contributions in the mixture. Hence, the proposed method does not use prior information about the signal and the noise morphologies, but it entirely adapts to the signal and the noise of the data. It does not require a manual search for adequate transforms that may sparsify the signal and the noise, in contrast to existing MCA-based methods. We develop an application of the proposed method for removing the mechanical noise from a marine seismic data set. For mechanical noise that is coherent in space and time, the results show that our method provides better denoising in comparison with the standard FX-Decon, FX-Cadzow, and the curvelet-based denoising methods.

Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. V1-V10
Author(s):  
Julián L. Gómez ◽  
Danilo R. Velis ◽  
Juan I. Sabbione

We have developed an empirical-mode decomposition (EMD) algorithm for effective suppression of random and coherent noise in 2D and 3D seismic amplitude data. Unlike other EMD-based methods for seismic data processing, our approach does not involve the time direction in the computation of the signal envelopes needed for the iterative sifting process. Instead, we apply the sifting algorithm spatially in the inline-crossline plane. At each time slice, we calculate the upper and lower signal envelopes by means of a filter whose length is adapted dynamically at each sifting iteration according to the spatial distribution of the extrema. The denoising of a 3D volume is achieved by removing the most oscillating modes of each time slice from the noisy data. We determine the performance of the algorithm by using three public-domain poststack field data sets: one 2D line of the well-known Alaska 2D data set, available from the US Geological Survey; a subset of the Penobscot 3D volume acquired offshore by the Nova Scotia Department of Energy, Canada; and a subset of the Stratton 3D land data from South Texas, available from the Bureau of Economic Geology at the University of Texas at Austin. The results indicate that random and coherent noise, such as footprint signatures, can be mitigated satisfactorily, enhancing the reflectors with negligible signal leakage in most cases. Our method, called empirical-mode filtering (EMF), yields improved results compared to other 2D and 3D techniques, such as [Formula: see text] EMD filter, [Formula: see text] deconvolution, and [Formula: see text]-[Formula: see text]-[Formula: see text] adaptive prediction filtering. EMF exploits the flexibility of EMD on seismic data and is presented as an efficient and easy-to-apply alternative for denoising seismic data with mild to moderate structural complexity.


2001 ◽  
Vol 41 (1) ◽  
pp. 671
Author(s):  
T. Brice ◽  
L. Larsen ◽  
S. Morice ◽  
M. Svendsun

A new concept for acquiring calibrated towed streamer seismic data is introduced through a new acquisition and processing system called ‘Q-Marine’. The specification of the new system has been defined by rigorous analysis of the factors that limit the sensitivity of seismic data in 4D studies and imaging. New sensor and streamer technology, new source technology and advances in positioning techniques and data processing have addressed these limitations.Sensitivity analysis revealed that the most significant perturbations to the seismic signal are swell noise and sensor sensitivity variations. Conventional analog groups of hydrophones are designed to suppress swell noise however a new technique for data-adaptive coherent noise attenuation delivers even greater noise suppression for densely spatially sampled single-sensor data.Although modern source controllers provide accurate airgun firing control, the signature of an airgun array may vary from shot to shot. This can be due to factors such as changes in the array geometry, air pressure variations, depth variations and wave action. A method for estimating the far-field signature of a source array is the Notional Source Method (proprietary to Schlumberger) which has been steadily refined since its first disclosure. A recent development compensates for variation in source array geometry by monitoring the position and azimuth of each subarray using GPS receivers mounted on the floats.New calibrated positioning and streamer control systems are part of the new acquisition system. Active vertical and lateral streamer control is achieved using steerable birds and positioning uncertainty is reduced through an in-built fully braced acoustic ranging system.Calibrated marine seismic data are achieved through quantifying the source output, the sensor responses and positioning uncertainty. The consequential improvements in seismic fidelity result in better imaging and more reliable 4D analysis.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. V355-V365
Author(s):  
Julián L. Gómez ◽  
Danilo R. Velis

Dictionary learning (DL) is a machine learning technique that can be used to find a sparse representation of a given data set by means of a relatively small set of atoms, which are learned from the input data. DL allows for the removal of random noise from seismic data very effectively. However, when seismic data are contaminated with footprint noise, the atoms of the learned dictionary are often a mixture of data and coherent noise patterns. In this scenario, DL requires carrying out a morphological attribute classification of the atoms to separate the noisy atoms from the dictionary. Instead, we have developed a novel DL strategy for the removal of footprint patterns in 3D seismic data that is based on an augmented dictionary built upon appropriately filtering the learned atoms. The resulting augmented dictionary, which contains the filtered atoms and their residuals, has a high discriminative power in separating signal and footprint atoms, thus precluding the use of any statistical classification strategy to segregate the atoms of the learned dictionary. We filter the atoms using a domain transform filtering approach, a very efficient edge-preserving smoothing algorithm. As in the so-called coherence-constrained DL method, the proposed DL strategy does not require the user to know or adjust the noise level or the sparsity of the solution for each data set. Furthermore, it only requires one pass of DL and is shown to produce successful transfer learning. This increases the speed of the denoising processing because the augmented dictionary does not need to be calculated for each time slice of the input data volume. Results on synthetic and 3D public-domain poststack field data demonstrate effective footprint removal with accurate edge preservation.


Geophysics ◽  
1983 ◽  
Vol 48 (7) ◽  
pp. 854-886 ◽  
Author(s):  
Ken Larner ◽  
Ron Chambers ◽  
Mai Yang ◽  
Walt Lynn ◽  
Willon Wai

Despite significant advances in marine streamer design, seismic data are often plagued by coherent noise having approximately linear moveout across stacked sections. With an understanding of the characteristics that distinguish such noise from signal, we can decide which noise‐suppression techniques to use and at what stages to apply them in acquisition and processing. Three general mechanisms that might produce such noise patterns on stacked sections are examined: direct and trapped waves that propagate outward from the seismic source, cable motion caused by the tugging action of the boat and tail buoy, and scattered energy from irregularities in the water bottom and sub‐bottom. Depending upon the mechanism, entirely different noise patterns can be observed on shot profiles and common‐midpoint (CMP) gathers; these patterns can be diagnostic of the dominant mechanism in a given set of data. Field data from Canada and Alaska suggest that the dominant noise is from waves scattered within the shallow sub‐buttom. This type of noise, while not obvious on the shot records, is actually enhanced by CMP stacking. Moreover, this noise is not confined to marine data; it can be as strong as surface wave noise on stacked land seismic data as well. Of the many processing tools available, moveout filtering is best for suppressing the noise while preserving signal. Since the scattered noise does not exhibit a linear moveout pattern on CMP‐sorted gathers, moveout filtering must be applied either to traces within shot records and common‐receiver gathers or to stacked traces. Our data example demonstrates that although it is more costly, moveout filtering of the unstacked data is particularly effective because it conditions the data for the critical data‐dependent processing steps of predictive deconvolution and velocity analysis.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. V137-V148 ◽  
Author(s):  
Pierre Turquais ◽  
Endrias G. Asgedom ◽  
Walter Söllner

We have addressed the seismic data denoising problem, in which the noise is random and has an unknown spatiotemporally varying variance. In seismic data processing, random noise is often attenuated using transform-based methods. The success of these methods in denoising depends on the ability of the transform to efficiently describe the signal features in the data. Fixed transforms (e.g., wavelets, curvelets) do not adapt to the data and might fail to efficiently describe complex morphologies in the seismic data. Alternatively, dictionary learning methods adapt to the local morphology of the data and provide state-of-the-art denoising results. However, conventional denoising by dictionary learning requires a priori information on the noise variance, and it encounters difficulties when applied for denoising seismic data in which the noise variance is varying in space or time. We have developed a coherence-constrained dictionary learning (CDL) method for denoising that does not require any a priori information related to the signal or noise. To denoise a given window of a seismic section using CDL, overlapping small 2D patches are extracted and a dictionary of patch-sized signals is trained to learn the elementary features embedded in the seismic signal. For each patch, using the learned dictionary, a sparse optimization problem is solved, and a sparse approximation of the patch is computed to attenuate the random noise. Unlike conventional dictionary learning, the sparsity of the approximation is constrained based on coherence such that it does not need a priori noise variance or signal sparsity information and is still optimal to filter out Gaussian random noise. The denoising performance of the CDL method is validated using synthetic and field data examples, and it is compared with the K-SVD and FX-Decon denoising. We found that CDL gives better denoising results than K-SVD and FX-Decon for removing noise when the variance varies in space or time.


Geophysics ◽  
2006 ◽  
Vol 71 (2) ◽  
pp. V41-V49 ◽  
Author(s):  
Gérard C. Herman ◽  
Colin Perkins

Land seismic data can be severely contaminated with coherent noise. We discuss a deterministic technique to predict and remove scattered coherent noise from land seismic data based on a mathematical model of near-surface wave propagation. We test the method on a unique data set recorded by Petroleum Development of Oman in the Qarn Alam area (with shots and receivers on the same grid), and we conclude that it effectively reduces scattered noise without smearing reflection energy.


2013 ◽  
Vol 1 (2) ◽  
pp. SB97-SB108 ◽  
Author(s):  
Benjamin L. Dowdell ◽  
J. Tim Kwiatkowski ◽  
Kurt J. Marfurt

With the advent of horizontal drilling and hydraulic fracturing in the Midcontinent, USA, fields once thought to be exhausted are now experiencing renewed exploitation. However, traditional Midcontinent seismic analysis techniques no longer provide satisfactory reservoir characterization for these unconventional plays; new seismic analysis methods are needed to properly characterize these radically innovative play concepts. Time processing and filtering is applied to a raw 3D seismic data set from Osage County, Oklahoma, paying careful attention to velocity analysis, residual statics, and coherent noise filtering. The use of a robust prestack structure-oriented filter and spectral whitening greatly enhances the results. After prestack time migrating the data using a Kirchhoff algorithm, new velocities are picked. A final normal moveout correction is applied using the new velocities, followed by a final prestack structure-oriented filter and spectral whitening. Simultaneous prestack inversion uses the reprocessed and time-migrated seismic data as input, along with a well from within the bounds of the survey. With offsets out to 3048 m and a target depth of approximately 880 m, we can invert for density in addition to P- and S-impedance. Prestack inversion attributes are sensitive to lithology and porosity while surface seismic attributes such as coherence and curvature are sensitive to lateral changes in waveform and structure. We use these attributes in conjunction with interpreted horizontal image logs to identify zones of high porosity and high fracture density.


2020 ◽  
Vol 5 (1) ◽  
pp. 04-06
Author(s):  
Bridget L. Lawrence ◽  
Etim D. Uko ◽  
Chibuogwu L. Eze ◽  
Chicozie Israel-Cookey ◽  
Iyeneomie Tamunobereton-ari ◽  
...  

Three-dimensional (3D) land seismic datasets were acquired from Central Depobelt in the Niger Delta region, Nigeria, with with the aim of attenuating ground roll noise from the dataset. The Omega (Schlumberger) software 2018 version was used along with frequency offset coherent noise suppression (FXCNS) and Anomalous Amplitude Attenuation (AAA) algorithms for ground roll attenuation. From the results obtained, Frequency Offset Coherent Noise Suppression (FXCNS) attenuates ground roll while AAA algorithm attenuates the residual high amplitude noise from the seismic data. Average frequency of the ground roll in the seismic data is 10.50Hz which falls within the actual range of ground roll frequency which is within the range of 3.00 – 18.00Hz. The average velocity of the ground roll in the seismic data is 477.36ms-1 while the velocity of ground roll ranges between 347.44 and 677.37ms-1. The wavelength of ground roll in the seismic data is 50.28m. The amplitude of the ground roll of -6.24dB is maximum at 4.2Hz. Frequency of signal ranges between 10.21 and 25.12Hz with an average of 17.67Hz. Signal amplitude of -8.32dB is maximum at 6.30Hz, while its wavelength is 57.12m. The results of this work can be used in the seismic source-receiver design for application in the area of study. Moreover, with ground roll noise attenuated, a better image of the subsurface geology is obtained hence reducing the risk of obtaining a wild cat drilling.


Geophysics ◽  
2021 ◽  
pp. 1-70
Author(s):  
Rodrigo S. Santos ◽  
Daniel E. Revelo ◽  
Reynam C. Pestana ◽  
Victor Koehne ◽  
Diego F. Barrera ◽  
...  

Seismic images produced by migration of seismic data related to complex geologies, suchas pre-salt environments, are often contaminated by artifacts due to the presence of multipleinternal reflections. These reflections are created when the seismic wave is reflected morethan once in a source-receiver path and can be interpreted as the main coherent noise inseismic data. Several schemes have been developed to predict and subtract internal multiplereflections from measured data, such as the Marchenko multiple elimination (MME) scheme,which eliminates the referred events without requiring a subsurface model or an adaptivesubtraction approach. The MME scheme is data-driven, can remove or attenuate mostof these internal multiples, and was originally based on the Neumann series solution ofMarchenko’s projected equations. However, the Neumann series approximate solution isconditioned to a convergence criterion. In this work, we propose to formulate the MMEas a least-squares problem (LSMME) in such a way that it can provide an alternative thatavoids a convergence condition as required in the Neumann series approach. To demonstratethe LSMME scheme performance, we apply it to 2D numerical examples and compare theresults with those obtained by the conventional MME scheme. Additionally, we evaluatethe successful application of our method through the generation of in-depth seismic images,by applying the reverse-time migration (RTM) algorithm on the original data set and tothose obtained through MME and LSMME schemes. From the RTM results, we show thatthe application of both schemes on seismic data allows the construction of seismic imageswithout artifacts related to internal multiple events.


Sign in / Sign up

Export Citation Format

Share Document