Random noise attenuation by planar mathematical morphological filtering
Improving the signal-to-noise ratio (S/N) of seismic data is desirable in many seismic exploration areas. The attenuation of random noise can help to improve the S/N. Geophysicists usually use the differences between signal and random noise in certain attributes, such as frequency, wavenumber, or correlation, to suppress random noise. However, in some cases, these differences are too small to be distinguished. We used the difference in planar morphological scales between signal and random noise to separate them. The planar morphological scale is the information that describes the regional shape of seismic waveforms. The attenuation of random noise is achieved by removing the energy in the smaller morphological scales. We call our method planar mathematical morphological filtering (PMMF). We analyze the relationship between the performance of PMMF and its input parameters in detail. Applications of the PMMF method to synthetic and field post/prestack seismic data demonstrate good performance compared with competing alternative techniques.