Denoising with weak signal preservation by group-sparsity transform learning

Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. V351-V368 ◽  
Author(s):  
Xiaojing Wang ◽  
Bihan Wen ◽  
Jianwei Ma

Weak signal preservation is critical in the application of seismic data denoising, especially in deep seismic exploration. It is hard to separate those weak signals in seismic data from random noise because it is less compressible or sparsifiable, although they are usually important for seismic data analysis. Conventional sparse coding models exploit the local sparsity through learning a union of basis, but it does not take into account any prior information about the internal correlation of patches. Motivated by an observation that data patches within a group are expected to share the same sparsity pattern in the transform domain, so-called group sparsity, we have developed a novel transform learning with group sparsity (TLGS) method that jointly exploits local sparsity and internal patch self-similarity. Furthermore, for weak signal preservation, we extended the TLGS method and developed the transform learning with external reference. External clean or denoised patches are applied as the anchored references, which are grouped together with similar corrupted patches. They are jointly modeled under a sparse transform, which is adaptively learned. This is achieved by jointly learning a subset of the transform for each group data. Our method achieves better denoising performance than existing denoising methods, in terms of signal-to-noise ratio values and visual preservation of weak signal. Comparisons of experimental results on one synthetic data and three field data using the [Formula: see text]-[Formula: see text] deconvolution method and the data-driven tight frame method are also provided.

Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. V11-V25 ◽  
Author(s):  
Weilin Huang ◽  
Runqiu Wang

Improving the signal-to-noise ratio (S/N) of seismic data is desirable in many seismic exploration areas. The attenuation of random noise can help to improve the S/N. Geophysicists usually use the differences between signal and random noise in certain attributes, such as frequency, wavenumber, or correlation, to suppress random noise. However, in some cases, these differences are too small to be distinguished. We used the difference in planar morphological scales between signal and random noise to separate them. The planar morphological scale is the information that describes the regional shape of seismic waveforms. The attenuation of random noise is achieved by removing the energy in the smaller morphological scales. We call our method planar mathematical morphological filtering (PMMF). We analyze the relationship between the performance of PMMF and its input parameters in detail. Applications of the PMMF method to synthetic and field post/prestack seismic data demonstrate good performance compared with competing alternative techniques.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. V367-V376 ◽  
Author(s):  
Omar M. Saad ◽  
Yangkang Chen

Attenuation of seismic random noise is considered an important processing step to enhance the signal-to-noise ratio of seismic data. A new approach is proposed to attenuate random noise based on a deep-denoising autoencoder (DDAE). In this approach, the time-series seismic data are used as an input for the DDAE. The DDAE encodes the input seismic data to multiple levels of abstraction, and then it decodes those levels to reconstruct the seismic signal without noise. The DDAE is pretrained in a supervised way using synthetic data; following this, the pretrained model is used to denoise the field data set in an unsupervised scheme using a new customized loss function. We have assessed the proposed algorithm based on four synthetic data sets and two field examples, and we compare the results with several benchmark algorithms, such as f- x deconvolution ( f- x deconv) and the f- x singular spectrum analysis ( f- x SSA). As a result, our algorithm succeeds in attenuating the random noise in an effective manner.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. V79-V86 ◽  
Author(s):  
Hakan Karsli ◽  
Derman Dondurur ◽  
Günay Çifçi

Time-dependent amplitude and phase information of stacked seismic data are processed independently using complex trace analysis in order to facilitate interpretation by improving resolution and decreasing random noise. We represent seismic traces using their envelopes and instantaneous phases obtained by the Hilbert transform. The proposed method reduces the amplitudes of the low-frequency components of the envelope, while preserving the phase information. Several tests are performed in order to investigate the behavior of the present method for resolution improvement and noise suppression. Applications on both 1D and 2D synthetic data show that the method is capable of reducing the amplitudes and temporal widths of the side lobes of the input wavelets, and hence, the spectral bandwidth of the input seismic data is enhanced, resulting in an improvement in the signal-to-noise ratio. The bright-spot anomalies observed on the stacked sections become clearer because the output seismic traces have a simplified appearance allowing an easier data interpretation. We recommend applying this simple signal processing for signal enhancement prior to interpretation, especially for single channel and low-fold seismic data.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. V71-V80 ◽  
Author(s):  
Xiong Ma ◽  
Guofa Li ◽  
Hao Li ◽  
Wuyang Yang

Seismic absorption compensation is an important processing approach to mitigate the attenuation effects caused by the intrinsic inelasticity of subsurface media and to enhance seismic resolution. However, conventional absorption compensation approaches ignore the spatial connection along seismic traces, which makes the compensation result vulnerable to high-frequency noise amplification, thus reducing the signal-to-noise ratio (S/N) of the result. To alleviate this issue, we have developed a structurally constrained multichannel absorption compensation (SC-MAC) algorithm. In the cost function of this algorithm, we exploit an [Formula: see text] norm to constrain the reflectivity series and an [Formula: see text] norm to regularize the reflection structural characteristic of the compensation data. The reflection structural characteristic operator, extracted from the observed stacked seismic data, is the core of the structural regularization term. We then solve the cost function of SC-MAC by the alternating direction method of multipliers. Benefiting from the introduction of reflection structure constraint, SC-MAC improves the stability of the compensation result and inhibits the amplification of high-frequency noise. Synthetic and field data examples demonstrate that our proposed method is more robust to random noise and can not only improve the resolution of seismic data, but also maintain the S/N of the compensation seismic data.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. A19-A24 ◽  
Author(s):  
Aleksander S. Serdyukov ◽  
Aleksander V. Yablokov ◽  
Anton A. Duchkov ◽  
Anton A. Azarov ◽  
Valery D. Baranov

We have addressed the problem of estimating surface-wave phase velocities through the spectral processing of seismic data. This is the key step of the well-known near-surface seismic exploration method, called multichannel analysis of surface waves. To increase the accuracy and ensure the unambiguity of the selection of dispersion curves, we have developed a new version of the frequency-wavenumber ([Formula: see text]-[Formula: see text]) transform based on the S-transform. We obtain the frequency-time representation of seismic data. We analyze the obtained S-transform frequency-time representation in a slant-stacking manner but use a spatial Fourier transform instead of amplitude stacking. Finally, we build the [Formula: see text]-[Formula: see text] image by analyzing the spatial spectra for different steering values of the surface-wave group velocities. The time localization of the surface-wave packet at each frequency increases the signal-to-noise ratio because of an exclusion of noise in other time steps (which does not fall in the effective width of the corresponding wavelet). The new [Formula: see text]-[Formula: see text] transform, i.e., the slant [Formula: see text]-[Formula: see text] (SFK) transform, renders a better spectral analysis than the conventional [Formula: see text]-[Formula: see text] transform and yields more accurate phase-velocity estimation, which is critical for the surface-wave analysis. The advantages of the SFK transform have been confirmed by synthetic- and field-data processing.


Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. V229-V237 ◽  
Author(s):  
Hongbo Lin ◽  
Yue Li ◽  
Baojun Yang ◽  
Haitao Ma

Time-frequency peak filtering (TFPF) may efficiently suppress random noise and hence improve the signal-to-noise ratio. However, the errors are not always satisfactory when applying the TFPF to fast-varying seismic signals. We begin with an error analysis for the TFPF by using the spread factor of the phase and cumulants of noise. This analysis shows that the nonlinear signal component and non-Gaussian random noise lead to the deviation of the pseudo-Wigner-Ville distribution (PWVD) peaks from the instantaneous frequency. The deviation introduces the signal distortion and random oscillations in the result of the TFPF. We propose a weighted reassigned smoothed PWVD with less deviation than PWVD. The proposed method adopts a frequency window to smooth away the residual oscillations in the PWVD, and incorporates a weight function in the reassignment which sharpens the time-frequency distribution for reducing the deviation. Because the weight function is determined by the lateral coherence of seismic data, the smoothed PWVD is assigned to the accurate instantaneous frequency for desired signal components by weighted frequency reassignment. As a result, the TFPF based on the weighted reassigned PWVD (TFPF_WR) can be more effective in suppressing random noise and preserving signal as compared with the TFPF using the PWVD. We test the proposed method on synthetic and field seismic data, and compare it with a wavelet-transform method and [Formula: see text] prediction filter. The results show that the proposed method provides better performance over the other methods in signal preserving under low signal-to-noise ratio.


Geophysics ◽  
2009 ◽  
Vol 74 (1) ◽  
pp. V17-V24 ◽  
Author(s):  
Yang Liu ◽  
Cai Liu ◽  
Dian Wang

Random noise in seismic data affects the signal-to-noise ratio, obscures details, and complicates identification of useful information. We have developed a new method for reducing random, spike-like noise in seismic data. The method is based on a 1D stationary median filter (MF) — the 1D time-varying median filter (TVMF). We design a threshold value that controls the filter window according to characteristics of signal and random, spike-like noise. In view of the relationship between seismic data and the threshold value, we chose median filters with different time-varying filter windows to eliminate random, spike-like noise. When comparing our method with other common methods, e.g., the band-pass filter and stationary MF, we found that the TVMF strikes a balance between eliminating random noise and protecting useful information. We tested the feasibility of our method in reducing seismic random, spike-like noise, on a synthetic dataset. Results of applying the method to seismic land data from Texas demonstrated that the TVMF method is effective in practice.


Geophysics ◽  
2013 ◽  
Vol 78 (5) ◽  
pp. U53-U63 ◽  
Author(s):  
Andrea Tognarelli ◽  
Eusebio Stucchi ◽  
Alessia Ravasio ◽  
Alfredo Mazzotti

We tested the properties of three different coherency functionals for the velocity analysis of seismic data relative to subbasalt exploration. We evaluated the performance of the standard semblance algorithm and two high-resolution coherency functionals based on the use of analytic signals and of the covariance estimation along hyperbolic traveltime trajectories. Approximate knowledge of the wavelet was exploited to design appropriate filters that matched the primary reflections, thereby further improving the ability of the functionals to highlight the events of interest. The tests were carried out on two synthetic seismograms computed on models reproducing the geologic setting of basaltic intrusions and on common midpoint gathers from a 3D survey. Synthetic and field data had a very low signal-to-noise ratio, strong multiple contamination, and weak primary subbasalt signals. The results revealed that high-resolution coherency functionals were more suitable than semblance algorithms to detect primary signals and to distinguish them from multiples and other interfering events. This early discrimination between primaries and multiples could help to target specific signal enhancement and demultiple operations.


Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1310-1314 ◽  
Author(s):  
Qing Li ◽  
Kris Vasudevan ◽  
Frederick A. Cook

Coherency filtering is a tool used commonly in 2-D seismic processing to isolate desired events from noisy data. It assumes that phase‐coherent signal can be separated from background incoherent noise on the basis of coherency estimates, and coherent noise from coherent signal on the basis of different dips. It is achieved by searching for the maximum coherence direction for each data point of a seismic event and enhancing the event along this direction through stacking; it suppresses the incoherent events along other directions. Foundations for a 2-D coherency filtering algorithm were laid out by several researchers (Neidell and Taner, 1971; McMechan, 1983; Leven and Roy‐Chowdhury, 1984; Kong et al., 1985; Milkereit and Spencer, 1989). Milkereit and Spencer (1989) have applied 2-D coherency filtering successfully to 2-D deep crustal seismic data for the improvement of visualization and interpretation. Work on random noise attenuation using frequency‐space or time‐space prediction filters both in two or three dimensions to increase the signal‐to‐noise ratio of the data can be found in geophysical literature (Canales, 1984; Hornbostel, 1991; Abma and Claerbout, 1995).


Geophysics ◽  
1989 ◽  
Vol 54 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Jakob B. U. Haldorsen ◽  
Paul A. Farmer

Occasionally, seismic data contain transient noise that can range from being a nuisance to becoming intolerable when several seismic vessels try simultaneously to collect data in an area. The traditional approach to solving this problem has been to allocate time slots to the different acquisition crews; the procedure, although effective, is very expensive. In this paper a statistical method called “trimmed mean stack” is evaluated as a tool for reducing the detrimental effects of noise from interfering seismic crews. Synthetic data, as well as field data, are used to illustrate the efficacy of the technique. Although a conventional stack gives a marginally better signal‐to‐noise ratio (S/N) for data without interference noise, typical usage of the trimmed mean stack gives a reduced S/N equivalent to a fold reduction of about 1 or 2 percent. On the other hand, for a data set containing high‐energy transient noise, trimming produces stacked sections without visible high‐amplitude contaminating energy. Equivalent sections produced with conventional processing techniques would be totally unacceptable. The application of a trimming procedure could mean a significant reduction in the costs of data acquisition by allowing several seismic crews to work simultaneously.


Sign in / Sign up

Export Citation Format

Share Document