scholarly journals Removing the CFL stability criterion of the explicit time-domain very high degree spectral-element method with eigenvalue perturbation

Geophysics ◽  
2021 ◽  
pp. 1-29
Author(s):  
Chao Lyu ◽  
Yann Capdeville ◽  
Gang Lv ◽  
Liang Zhao

The explicit time-domain spectral-element method (SEM) for synthesizing seismograms hasgained tremendous credibility within the seismological community at all scales. Althoughthe recent introduction of non-periodic homogenization has addressed the spatial meshing difficulty of the mechanical discontinuities, the Courant-Friedrichs-Lewy (CFL) stability criterionstrictly constrains the maximum time step, which still puts a great burden on the numericalsimulation. In the explicit time-domain SEM, the source of instability of using a time stepbeyond the stability criterion is that some unstable eigenvalues of the updated matrix are largerthan what can be accurately simulated. We succeed in removing the CFL stability condition inthe explicit time-domain SEM by combining the forward time dispersion-transform method,the eigenvalue perturbation, and the inverse time dispersion-transform method. Our theoretical analyses and numerical experiments both in the homogeneous, moderate and strong heterogeneous models, show that this combination can precisely simulate waveforms with timesteps dozens of the CFL limit even towards the Nyquist limit especially for the efficient veryhigh degree SEM, which abundantly saves the iteration times without suffering from the time-dispersion error. It demonstrates a potential application prospect in some situations such as thefull waveform inversion which requires multiple numerical simulations for the same model.

Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. R61-R83 ◽  
Author(s):  
Phuong-Thu Trinh ◽  
Romain Brossier ◽  
Ludovic Métivier ◽  
Laure Tavard ◽  
Jean Virieux

Viscoelastic full-waveform inversion is recognized as a challenging task for current acquisition deployment at the crustal scale. We have developed an efficient formulation based on a time-domain spectral-element method on a flexible Cartesian-based mesh. We consider anisotropic elastic coefficients and isotropic attenuation. Complete gradient expressions including the attenuation contribution spread into those of elastic components are given in a consistent way. The influence of attenuation on the P-wave velocity reconstruction is illustrated through a toy configuration. The numerical implementation of the forward problem includes efficient matrix-vector products for solving second-order elastodynamic equations for 3D geometries: An original high-order integration for topography effects is performed at nearly no extra cost. Combined adjoint and forward field recomputation from the final state and previously saved boundary values allows the estimation of misfit gradients for density, elastic parameters, and attenuation factors with no I/O efforts. Two-level parallelism is implemented over the sources and domain decomposition, which is necessary for a realistic 3D configuration. The misfit gradient preconditioning is performed by a so-called Bessel filter using an efficient differential implementation based on finite-element ingredients on the forward mesh instead of the often-used, costly convolution approach. A 3D synthetic illustration is provided on a subset ([Formula: see text]) of the SEG Advanced Modeling (SEAM) Phase II Foothills model with 4 lines of 20 sources. The structurally based Bessel filter and a simple data hierarchy strategy considering early body waves before all waves including surface waves allow a precise reconstruction of the P- and S-wavespeeds while keeping a smooth density description.


Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. T33-T43
Author(s):  
Chao Lyu ◽  
Yann Capdeville ◽  
Liang Zhao

The spectral element method (SEM) has gained tremendous popularity within the seismological community to solve the wave equation at all scales. Classic SEM applications mostly rely on degrees 4–8 elements in each tensorial direction. Higher degrees are usually not considered due to two main reasons. First, high degrees imply large elements, which make the meshing of mechanical discontinuities difficult. Second, the SEM’s collocation points cluster toward the edge of the elements with the degree, degrading the time-marching stability criteria and imposing a small time step and a high numerical cost. Recently, the homogenization method has been introduced in seismology. This method can be seen as a preprocessing step before solving the wave equation that smooths out the internal mechanical discontinuities of the elastic model. It releases the meshing constraint and makes use of very high degree elements more attractive. Thus, we address the question of memory and computing time efficiency of very high degree elements in SEM, up to degree 40. Numerical analyses reveal that, for a fixed accuracy, very high degree elements require less computer memory than low-degree elements. With minimum sampling points per minimum wavelength of 2.5, the memory needed for a degree 20 is about a quarter that of the one necessary for a degree 4 in two dimensions and about one-eighth in three dimensions. Moreover, for the SEM codes tested in this work, the computation time with degrees 12–24 can be up to twice faster than the classic degree 4. This makes SEM with very high degrees attractive and competitive for solving the wave equation in many situations.


2019 ◽  
Vol 145 (6) ◽  
pp. 3299-3310 ◽  
Author(s):  
Finnur Pind ◽  
Allan P. Engsig-Karup ◽  
Cheol-Ho Jeong ◽  
Jan S. Hesthaven ◽  
Mikael S. Mejling ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document