Tracking of moving magnetic target based on magnetic gradient system with total field magnetometers

Sensor Review ◽  
2018 ◽  
Vol 38 (4) ◽  
pp. 501-508 ◽  
Author(s):  
Liming Fan ◽  
Xiyuan Kang ◽  
Quan Zheng ◽  
Xiaojun Zhang ◽  
Xuejun Liu ◽  
...  

Purpose This paper aims to focus on the tracking of a moving magnetic target by using total field magnetometers and to present a tracking method based on the gradient of a magnetic anomaly. In the tracking, it is assumed that the motion of the target is equivalent to a first-order Markov process. And the unit direction vector of the magnetic moment from the gradient of the magnetic anomaly can be obtained. According to the unit direction vector, the inverse problem is turned into an optimization problem to estimate the parameters of the target. The particle swarm optimization algorithm is used to solve this optimization problem. The proposed method is validated by the numerical simulation and real data. The parameters of the target can be calculated rapidly using the proposed method. And the results show that the estimated parameters of the mobile target using the proposed method are very close to the true values. Design/methodology/approach The authors focus on the tracking of a moving magnetic target by using total field magnetometers and present a tracking method based on the gradient of a magnetic anomaly. Findings The paper provides an effective method for tracking the magnetic target based on an array with total field sensors. Originality/value Comparing with a vector magnetic sensor, the measurement of the scalar magnetic sensor is almost not influenced by its orientation. In this paper, a moving magnetic target was tracked by using total field magnetometers and a tracking method presented based on the gradient of a magnetic anomaly.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaojun Zhang ◽  
Liming Fan ◽  
Peng Cheng ◽  
Chunlei Chen ◽  
Xuejun Liu ◽  
...  

The orientation of a vector magnetic sensor can affect the measurement accuracy of magnetic anomaly, thereby increasing the localization error of a magnetic target. Compared with vector magnetic sensor, the measurement of the scalar magnetic sensor is almost not influenced by its orientation. Therefore, we present a method for tracking the magnetic target with a static scalar magnetometer array. In this study, the magnitude of the target’s magnetic moment is a key parameter. We isolate it and formulate an optimization problem based on it to estimate the position and magnetic parameters of the target. To calculate the solution of this optimization problem, a dedicated particle swarm optimization (PSO) algorithm is developed. Then, we define a quality index to evaluate the solution calculated by the optimization problem. The proposed method was validated by the simulation and the real data collected when an SUV car was passing by the array on a straight path. The results show that the tracked trajectory is very close to the true trajectory and the quality index can be used as a criterion to allow accepting or rejecting the localization of the target.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. J59-J70 ◽  
Author(s):  
Nelson Ribeiro-Filho ◽  
Rodrigo Bijani ◽  
Cosme Ponte-Neto

Knowledge of the total magnetization direction of geologic sources is valuable for interpretation of magnetic anomalies. Although the magnetization direction of causative sources is assumed to be induced by the ambient magnetic field, the presence of remanence should not be neglected. An existing method of correlating total and vertical gradients of the reduced-to-the-pole (RTP) anomaly estimates the total magnetization direction well. However, due to the numerical instability of RTP transformation in the Fourier domain, an assumption should be considered for dealing with inclination values at approximately 0°. We have adopted an extension to the standard crosscorrelation method for estimating the total magnetization direction vector, computing the RTP anomaly by means of the classic equivalent layer technique for low inclination values. Additionally, an ideal number of equivalent sources within the layer is considered for reducing the computational demands. To investigate the relevant aspects of the adopted method, two simple synthetic scenarios are presented. First, a magnetic anomaly produced by a homogeneous and isolated vertical dike is considered. This test illustrates the good performance of the adopted approach, finding the true magnetization direction, even for low inclination values. In the second synthetic test, a long-wavelength component is added to the previous magnetic total-field anomaly. In this case, the method adopted here fails to estimate a reliable magnetization direction vector, showing weak performance for strong interfering magnetic anomalies. On the real data example, the application tests an isolated total-field anomaly of the Carajás Mineral Province, in northern Brazil, where the inclination of the ambient magnetic field is close to zero. The obtained results indicate weak remanence in the estimated total magnetization direction vector, which would never be reached in the standard formulation of the crosscorrelation technique.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. L21-L30 ◽  
Author(s):  
Soraya Lozada Tuma ◽  
Carlos Alberto Mendonça

We present a three-step magnetic inversion procedure in which invariant quantities with respect to source parameters are inverted sequentially to give (1) shape cross section, (2) magnetization intensity, and (3) magnetization direction for a 2D (elongated) magnetic source. The quantity first inverted (called here the shape function) is obtained from the ratio of the gradient intensity of the total-field anomaly to the intensity of the anomalous vector field. For homogenous sources, the shape function is invariant with source magnetization and allows reconstruction of the source geometry by attributing an arbitrary magnetization to trial solutions. Once determined, the source shape is fixed and magnetization intensity is estimated by fitting the total gradient of the total-field anomaly (equivalent to the amplitude of the analytic signal of magnetic anomaly). Finally, the source shape and magnetization intensity are fixed and the magnetization direction is determined by fitting the magnetic anomaly. As suggested by numerical modeling and real data application, stepped inversion allows checking whether causative sources are homogeneous. This is possible because the shape function from inhomogeneous sources can be fitted by homogeneous models, but a model obtained in this way fits neither the total gradient of the magnetic anomaly nor the magnetic anomaly itself. Such a criterion seems effective in recognizing strongly inhomogeneous sources. Stepped inversion is tested with numerical experiments, and is used to model a magnetic anomaly from intrusive basic rocks from the Paraná Basin, Brazil.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (10) ◽  
pp. 607-618
Author(s):  
JÉSSICA MOREIRA ◽  
BRUNO LACERDA DE OLIVEIRA CAMPOS ◽  
ESLY FERREIRA DA COSTA JUNIOR ◽  
ANDRÉA OLIVEIRA SOUZA DA COSTA

The multiple effect evaporator (MEE) is an energy intensive step in the kraft pulping process. The exergetic analysis can be useful for locating irreversibilities in the process and pointing out which equipment is less efficient, and it could also be the object of optimization studies. In the present work, each evaporator of a real kraft system has been individually described using mass balance and thermodynamics principles (the first and the second laws). Real data from a kraft MEE were collected from a Brazilian plant and were used for the estimation of heat transfer coefficients in a nonlinear optimization problem, as well as for the validation of the model. An exergetic analysis was made for each effect individually, which resulted in effects 1A and 1B being the least efficient, and therefore having the greatest potential for improvement. A sensibility analysis was also performed, showing that steam temperature and liquor input flow rate are sensible parameters.


Author(s):  
Roberto Benedetti ◽  
Maria Michela Dickson ◽  
Giuseppe Espa ◽  
Francesco Pantalone ◽  
Federica Piersimoni

AbstractBalanced sampling is a random method for sample selection, the use of which is preferable when auxiliary information is available for all units of a population. However, implementing balanced sampling can be a challenging task, and this is due in part to the computational efforts required and the necessity to respect balancing constraints and inclusion probabilities. In the present paper, a new algorithm for selecting balanced samples is proposed. This method is inspired by simulated annealing algorithms, as a balanced sample selection can be interpreted as an optimization problem. A set of simulation experiments and an example using real data shows the efficiency and the accuracy of the proposed algorithm.


Author(s):  
Ezzeddine Touti ◽  
Ali Sghaier Tlili ◽  
Muhannad Almutiry

Purpose This paper aims to focus on the design of a decentralized observation and control method for a class of large-scale systems characterized by nonlinear interconnected functions that are assumed to be uncertain but quadratically bounded. Design/methodology/approach Sufficient conditions, under which the designed control scheme can achieve the asymptotic stabilization of the augmented system, are developed within the Lyapunov theory in the framework of linear matrix inequalities (LMIs). Findings The derived LMIs are formulated under the form of an optimization problem whose resolution allows the concurrent computation of the decentralized control and observation gains and the maximization of the nonlinearity coverage tolerated by the system without becoming unstable. The reliable performances of the designed control scheme, compared to a distinguished decentralized guaranteed cost control strategy issued from the literature, are demonstrated by numerical simulations on an extensive application of a three-generator infinite bus power system. Originality/value The developed optimization problem subject to LMI constraints is efficiently solved by a one-step procedure to analyze the asymptotic stability and to synthesize all the control and observation parameters. Therefore, such a procedure enables to cope with the conservatism and suboptimal solutions procreated by optimization problems based on iterative algorithms with multi-step procedures usually used in the problem of dynamic output feedback decentralized control of nonlinear interconnected systems.


2015 ◽  
Vol 35 (4) ◽  
pp. 341-347 ◽  
Author(s):  
E. Rouhani ◽  
M. J. Nategh

Purpose – The purpose of this paper is to study the workspace and dexterity of a microhexapod which is a 6-degrees of freedom (DOF) parallel compliant manipulator, and also to investigate its dimensional synthesis to maximize the workspace and the global dexterity index at the same time. Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Design/methodology/approach – Microassembly is so essential in the current industry for manufacturing complicated structures. Most of the micromanipulators suffer from their restricted workspace because of using flexure joints compared to the conventional ones. In addition, the controllability of micromanipulators inside the whole workspace is very vital. Thus, it is very important to select the design parameters in a way that not only maximize the workspace but also its global dexterity index. Findings – It has been shown that the proposed procedure for the workspace calculation can considerably speed the required calculations. The optimization results show that a converged-diverged configuration of pods and an increase in the difference between the moving and the stationary platforms’ radii cause the global dexterity index to increase and the workspace to decrease. Originality/value – The proposed algorithm for the workspace analysis is very important, especially when it is an objective function of an optimization problem based on the search method. In addition, using screw theory can simply construct the homogeneous Jacobian matrix. The proposed methodology can be used for any other micromanipulator.


2017 ◽  
Vol 11 (1) ◽  
pp. 2-15 ◽  
Author(s):  
René Michel ◽  
Igor Schnakenburg ◽  
Tobias von Martens

Purpose This paper aims to address the effective selection of customers for direct marketing campaigns. It introduces a new method to forecast campaign-related uplifts (also known as incremental response modeling or net scoring). By means of these uplifts, only the most responsive customers are targeted by a campaign. This paper also aims at calculating the financial impact of the new approach compared to the classical (gross) scoring methods. Design/methodology/approach First, gross and net scoring approaches to customer selection for direct marketing campaigns are compared. After that, it is shown how net scoring can be applied in practice with regard to different strategical objectives. Then, a new statistic for net scoring based on decision trees is developed. Finally, a business case based on real data from the financial sector is calculated to compare gross and net scoring approaches. Findings Whereas gross scoring focuses on customers with a high probability of purchase, regardless of being targeted by a campaign, net scoring identifies those customers who are most responsive to campaigns. A common scoring procedure – decision trees – can be enhanced by the new statistic to forecast those campaign-related uplifts. The business case shows that the selected scoring method has a relevant impact on economical indicators. Practical implications The contribution of net scoring to campaign effectiveness and efficiency is shown by the business case. Furthermore, this paper suggests a framework for customer selection, given strategical objectives, e.g. minimizing costs or maximizing (gross or lift)-added value, and presents a new statistic that can be applied to common scoring procedures. Originality/value Despite its lever on the effectiveness of marketing campaigns, only few contributions address net scores up to now. The new χ2-statistic is a straightforward approach to the enhancement of decision trees for net scoring. Furthermore, this paper is the first to the application of net scoring with regard to different strategical objectives.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Danni Chen ◽  
JianDong Zhao ◽  
Peng Huang ◽  
Xiongna Deng ◽  
Tingting Lu

Purpose Sparrow search algorithm (SSA) is a novel global optimization method, but it is easy to fall into local optimization, which leads to its poor search accuracy and stability. The purpose of this study is to propose an improved SSA algorithm, called levy flight and opposition-based learning (LOSSA), based on LOSSA strategy. The LOSSA shows better search accuracy, faster convergence speed and stronger stability. Design/methodology/approach To further enhance the optimization performance of the algorithm, The Levy flight operation is introduced into the producers search process of the original SSA to enhance the ability of the algorithm to jump out of the local optimum. The opposition-based learning strategy generates better solutions for SSA, which is beneficial to accelerate the convergence speed of the algorithm. On the one hand, the performance of the LOSSA is evaluated by a set of numerical experiments based on classical benchmark functions. On the other hand, the hyper-parameter optimization problem of the Support Vector Machine (SVM) is also used to test the ability of LOSSA to solve practical problems. Findings First of all, the effectiveness of the two improved methods is verified by Wilcoxon signed rank test. Second, the statistical results of the numerical experiment show the significant improvement of the LOSSA compared with the original algorithm and other natural heuristic algorithms. Finally, the feasibility and effectiveness of the LOSSA in solving the hyper-parameter optimization problem of machine learning algorithms are demonstrated. Originality/value An improved SSA based on LOSSA is proposed in this paper. The experimental results show that the overall performance of the LOSSA is satisfactory. Compared with the SSA and other natural heuristic algorithms, the LOSSA shows better search accuracy, faster convergence speed and stronger stability. Moreover, the LOSSA also showed great optimization performance in the hyper-parameter optimization of the SVM model.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Juan Carlos Ríos-Fernández

PurposeThis paper aims to study the use of cool roof technology to avoid unnecessary energy consumption in supermarkets. This will allow to reduce and even cancel the heat absorbed by the roofs, transferring it to the buildings and thus, creating more sustainable cities.Design/methodology/approachThirteen real supermarkets with cool roofs were analysed in Australia, Canada, the USA and Spain. An analysis of so many supermarkets located in different parts of the world with different climatic zones has allowed an inductive analysis, obtaining real data of energy consumption associated with the air conditioning installations for a year with and without implementing the cool roof technology.FindingsThe paper provides insights on how the use of cool roof managed to reduce the need for energy for heating, ventilating and air conditioning by between 3.5 and 38%. Additionally, this technology reduces the annual generation of carbon dioxide (CO2) emissions per square meter of supermarket up to 2.7 kgCO2/m2. It could be an economical technology to apply in new and old buildings with a period of average economic recovery of four years.Research limitations/implicationsBecause of the chosen research approach, the research results may be generalisable. Therefore, researchers are encouraged to test proposals in construction with other uses.Practical implicationsThe paper includes economic and environmental implications for the development of cool roof technology and smooths the way for its implementation to increase energy efficiency in commercial buildings.Originality/valueThis paper is an innovative contribution to the application of cool roof technology as a source of energy savings in commercial construction through the analysis of supermarkets located in different countries with different climate zones. This will help other researchers to advance in this field and facilitate the implementation of the technology.


Sign in / Sign up

Export Citation Format

Share Document