scholarly journals Time-lapse imaging using 3D ultra-high-frequency marine seismic reflection data

Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. P13-P25
Author(s):  
Michael J. Faggetter ◽  
Mark E. Vardy ◽  
Justin K. Dix ◽  
Jonathan M. Bull ◽  
Timothy J. Henstock

Time-lapse (4D) seismic imaging is now widely used as a tool to map and interpret changes in deep reservoirs as well as investigate dynamic, shallow hydrological processes in the near surface. However, there are very few examples of time-lapse analysis using ultra-high-frequency (UHF; kHz range) marine seismic reflection data. Exacting requirements for navigation can be prohibitive for acquiring coherent, true-3D volumes. Variable environmental noise can also lead to poor amplitude repeatability and make it difficult to identify differences that are related to real physical changes. Overcoming these challenges opens up a range of potential applications for monitoring the subsurface at decimetric resolution, including geohazards, geologic structures, as well as the bed-level and subsurface response to anthropogenic activities. Navigation postprocessing was incorporated to improve the acquisition and processing workflow for the 3D Chirp subbottom profiler and provide stable, centimeter-level absolute positioning, resulting in well-matched 3D data and mitigating 4D noise for data stacked into [Formula: see text] common-midpoint bins. Within an example 4D data set acquired on the south coast of the UK, interpretable differences are recorded within a shallow gas blanket. Reflections from the top and bottom of a gas pocket are imaged at low tide, whereas at high tide only the upper reflection is imaged. This case study demonstrates the viability of time-lapse UHF 3D seismic reflection for quantitative mapping of decimeter-scale changes within the shallow marine subsurface.

2019 ◽  
Author(s):  
Maurizio Ercoli ◽  
Emanuele Forte ◽  
Massimiliano Porreca ◽  
Ramon Carbonell ◽  
Cristina Pauselli ◽  
...  

Abstract. In seismotectonic studies, seismic reflection data are a powerful tool to unravel the complex deep architecture of active faults. Such tectonic structures are usually mapped at surface through traditional geological surveying whilst seismic reflection data may help to trace their continuation from the near-surface down to hypocentral depth. In this study, we propose the application of the seismic attributes technique, commonly used in seismic reflection exploration by oil industry, to seismotectonic research for the first time. The study area is a geologically complex region of Central Italy, recently struck by a long-lasting seismic sequence including a Mw 6.5 main-shock. A seismic reflection data-set consisting of three vintage seismic profiles, currently the only available across the epicentral zone, constitutes a singular opportunity to attempt a seismic attribute analysis. This analysis resulted in peculiar seismic signatures which generally correlate with the exposed surface geologic features, and also confirming the presence of other debated structures. These results are critical, because provide information also on the relatively deep structural setting, mapping a prominent, high amplitude regional reflector that marks the top basement, interpreted as important rheological boundary. Complex patterns of high-angle discontinuities crossing the reflectors have been also identified. These dipping fabrics are interpreted as the expression of fault zones, belonging to the active normal fault systems responsible for the seismicity of the region. This work demonstrates that seismic attribute analysis, even if used on low-quality vintage 2D data, may contribute to improve the subsurface geological interpretation of areas characterized by high seismic potential.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1434-1450 ◽  
Author(s):  
Frank Büker ◽  
Alan G. Green ◽  
Heinrich Horstmeyer

A comprehensive strategy of 3-D seismic reflection data acquisition and processing has been used in a study of glacial sediments deposited within a Swiss mountain valley. Seismic data generated by a downhole shotgun source were recorded with single 30-Hz geophones distributed at 3 m × 3 m intervals across a 357 m × 432 m area. For most common‐midpoint (CMP) bins, traces covering a full range of azimuths and source‐receiver distances of ∼2 to ∼125 m were recorded. A common processing scheme was applied to the entire data set and to various subsets designed to simulate data volumes collected with lower density source and receiver patterns. Comparisons of seismic sections extracted from the processed 3-D subsets demonstrated that high‐fold (>40) and densely spaced (CMP bin sizes ⩽ 3 m × 3 m) data with relatively large numbers (>6) of traces recorded at short (<20 m) source‐receiver offsets were essential for obtaining clear images of the shallowest (<100 ms) reflecting horizons. Reflections rich in frequencies >100 Hz at traveltimes of ∼20 to ∼170 ms provided a vertical resolution of 3 to 6 m over a depth range of ∼15 to ∼150 m. The shallowest prominent reflection at 20 to 35 ms (∼15 to 27 m depth) originated from the boundary between a near‐surface sequence of clays/silts and an underlying unit of heterogeneous sands/gravels.


Geophysics ◽  
1994 ◽  
Vol 59 (3) ◽  
pp. 402-410 ◽  
Author(s):  
Ross A. Black ◽  
Don W. Steeples ◽  
Richard D. Miller

We present an analysis of migration effects on seismic reflection images of very shallow targets such as those that are common objectives of engineering, groundwater, and environmental investigations. We use an example of seismic reflection data from depths of 5 to 15 m that show negligible effect from migration, despite the apparent steep dip on the seismic section. Our analysis of the question of when to migrate shallow reflection data indicates it is critical to take into account the highly variable near‐surface velocities and the vertical exaggeration on the seismic section. A simple set of calculations is developed as well as a flow chart based on the “migrator’s equation” that can predict whether migration of an arbitrary shallow seismic section is advisable. Because shallow reflection data are often processed on personal computers, unnecessary migration of a large data set can be prohibitively time‐consuming and wasteful.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1395-1407 ◽  
Author(s):  
Frank Büker ◽  
Alan G. Green ◽  
Heinrich Horstmeyer

Shallow seismic reflection data were recorded along two long (>1.6 km) intersecting profiles in the glaciated Suhre Valley of northern Switzerland. Appropriate choice of source and receiver parameters resulted in a high‐fold (36–48) data set with common midpoints every 1.25 m. As for many shallow seismic reflection data sets, upper portions of the shot gathers were contaminated with high‐amplitude, source‐generated noise (e.g., direct, refracted, guided, surface, and airwaves). Spectral balancing was effective in significantly increasing the strength of the reflected signals relative to the source‐generated noise, and application of carefully selected top mutes ensured guided phases were not misprocessed and misinterpreted as reflections. Resultant processed sections were characterized by distributions of distinct seismic reflection patterns or facies that were bounded by quasi‐continuous reflection zones. The uppermost reflection zone at 20 to 50 ms (∼15 to ∼40 m depth) originated from a boundary between glaciolacustrine clays/silts and underlying glacial sands/gravels (till) deposits. Of particular importance was the discovery that the deepest part of the valley floor appeared on the seismic section at traveltimes >180 ms (∼200 m), approximately twice as deep as expected. Constrained by information from boreholes adjacent to the profiles, the various seismic units were interpreted in terms of unconsolidated glacial, glaciofluvial, and glaciolacustrine sediments deposited during two principal phases of glaciation (Riss at >100 000 and Würm at ∼18 000 years before present).


Sign in / Sign up

Export Citation Format

Share Document