scholarly journals A complex point-source solution of the acoustic eikonal equation for Gaussian beams in transversely isotropic media

Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. T191-T207
Author(s):  
Xingguo Huang ◽  
Hui Sun ◽  
Zhangqing Sun ◽  
Nuno Vieira da Silva

The complex traveltime solutions of the complex eikonal equation are the basis of inhomogeneous plane-wave seismic imaging methods, such as Gaussian beam migration and tomography. We have developed analytic approximations for the complex traveltime in transversely isotropic media with a titled symmetry axis, which is defined by a Taylor series expansion over the anisotropy parameters. The formulation for the complex traveltime is developed using perturbation theory and the complex point-source method. The real part of the complex traveltime describes the wavefront, and the imaginary part of the complex traveltime describes the decay of the amplitude of waves away from the central ray. We derive the linearized ordinary differential equations for the coefficients of the Taylor-series expansion using perturbation theory. The analytical solutions for the complex traveltimes are determined by applying the complex point-source method to the background traveltime formula and subsequently obtaining the coefficients from the linearized ordinary differential equations. We investigate the influence of the anisotropy parameters and of the initial width of the ray tube on the accuracy of the computed traveltimes. The analytical formulas, as outlined, are efficient methods for the computation of complex traveltimes from the complex eikonal equation. In addition, those formulas are also effective methods for benchmarking approximated solutions.

Geophysics ◽  
2021 ◽  
pp. 1-33
Author(s):  
Xingguo Huang ◽  
Stewart Greenhalgh ◽  
Yun Long ◽  
Lin Jun ◽  
Xu Liu

Many applications in seismology involve the modeling of seismic wave traveltimes in anisotropic media. We present homotopy solutions of the acoustic eikonal equation for P-waves traveltimes in attenuating transversely isotropic media with a vertical symmetry axis. Instead of the commonly used perturbation theory, we use the homotopy analysis method to express the traveltimes by a Taylor series expansion over an embedding parameter. For the derivation, we first perform homotopy analysis of the eikonal equation and derive the linearized ordinary differential equations for the coefficients of the Taylor series expansion. Then, we obtain the homotopy solutions for the traveltimes by solving the linearized ordinary differential equations. Results on approximate formulae investigations demonstrate that the analytical expressions are efficient methods for the computation of traveltimes from the eikonal equation. In addition, these formulas are also effective methods for benchmarking approximated solutions in strongly attenuating anisotropic media.


2016 ◽  
Vol 65 (4) ◽  
pp. 981-991 ◽  
Author(s):  
Nabil Masmoudi ◽  
Alexey Stovas ◽  
Tariq Alkhalifah

Geophysics ◽  
1997 ◽  
Vol 62 (6) ◽  
pp. 1855-1866 ◽  
Author(s):  
Jack K. Cohen

In their studies of transversely isotropic media with a vertical symmetry axis (VTI media), Alkhalifah and Tsvankin observed that, to a high numerical accuracy, the normal moveout (NMO) velocity for dipping reflectors as a function of ray parameter p depends mainly on just two parameters, each of which can be determined from surface P‐wave observations. They substantiated this result by using the weak‐anisotropy approximation and exploited it to develop a time‐domain processing sequence that takes into account vertical transverse isotropy. In this study, the two‐parameter Alkhalifah‐Tsvankin result was further examined analytically. It was found that although there is (as these authors already observed) some dependence on the remaining parameters of the problem, this dependence is weak, especially in the practically important regimes of weak to moderately strong transverse isotropy and small ray parameter. In each of these regimes, an analytic solution is derived for the anisotropy parameter η required for time‐domain P‐wave imaging in VTI media. In the case of elliptical anisotropy (η = 0), NMO velocity expressed through p is fully controlled just by the zero‐dip NMO velocity—one of the Alkhalifah‐ Tsvankin parameters. The two‐parameter representation of NMO velocity also was shown to be exact in another limit—that of the zero shear‐wave vertical velociy. The analytic results derived here are based on new representations for both the P‐wave phase velocity and normal moveout velocity in terms of the ray parameter, with explicit expressions given for the cases of vanishing onaxis shear speed, weak to moderate transverse isotropy, and small to moderate ray parameter. Using these formulas, I have rederived and, in some cases, extended in a uniform manner various results of Tsvankin, Alkhalifah, and others. Examples include second‐order expansions in the anisotropy parameters for both the P‐wave phase‐velocity function and NMO‐velocity function, as well as expansions in powers of the ray parameter for both of these functions. I have checked these expansions against the corresponding exact functions for several choices of the anisotropy parameters.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. C9-C20 ◽  
Author(s):  
Qi Hao ◽  
Tariq Alkhalifah

Seismic-wave attenuation is an important component of describing wave propagation. Certain regions, such as gas clouds inside the earth, exert highly localized attenuation. In fact, the anisotropic nature of the earth induces anisotropic attenuation because the quasi P-wave dispersion effect should be profound along the symmetry direction. We have developed a 2D acoustic eikonal equation governing the complex-valued traveltime of quasi P-waves in attenuating, transversely isotropic media with a vertical-symmetry axis (VTI). This equation is derived under the assumption that the complex-valued traveltime of quasi P-waves in attenuating VTI media are independent of the S-wave velocity parameter [Formula: see text] in Thomsen’s notation and the S-wave attenuation coefficient [Formula: see text] in Zhu and Tsvankin’s notation. We combine perturbation theory and Shanks transform to develop practical approximations to the acoustic attenuating eikonal equation, capable of admitting an analytical description of the attenuation in homogeneous media. For a horizontal-attenuating VTI layer, we also derive the nonhyperbolic approximations for the real and imaginary parts of the complex-valued reflection traveltime. These equations reveal that (1) the quasi SV-wave velocity and the corresponding quasi SV-wave attenuation coefficient given as part of Thomsen-type notation barely affect the ray velocity and ray attenuation of quasi P-waves in attenuating VTI media; (2) combining the perturbation method and Shanks transform provides an accurate analytic eikonal solution for homogeneous attenuating VTI media; (3) for a horizontal attenuating VTI layer with weak attenuation, the real part of the complex-valued reflection traveltime may still be described by the existing nonhyperbolic approximations developed for nonattenuating VTI media, and the imaginary part of the complex-valued reflection traveltime still has the shape of nonhyperbolic curves. In addition, we have evaluated the possible extension of the proposed eikonal equation to realistic attenuating media, an alternative perturbation solution to the proposed eikonal equation, and the feasibility of applying the proposed nonhyperbolic equation for the imaginary part of the complex-valued traveltime to invert for interval attenuation parameters.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCC159-WCC175 ◽  
Author(s):  
Hui Chang ◽  
George McMechan

Traveltime-based inversions cannot solve for all of the anisotropy parameters for orthorhombic media. Vertical velocities cannot be recovered simultaneously with the dimensionless anisotropy parameters. Also, the density cannot be solved because it does not affect the normal moveout of P and S reflections. These limitations can be overcome using full-wavefield inversion for anisotropy parameters for orthorhombic media and for transversely isotropic media with vertical and horizontal symmetry axes. Tsvankin’s parameters and the orientation of the local (anisotropic) coordinates are inverted from three-component, wide-azimuth data sets containing P reflected and PS converted waves. The inversions are performed in two steps. The first step uses only reflections from the top of an anisotropic layer, whichdoes not constrain the trade-offs between the vertical velocities, the anisotropies, and density, as shown by parameter correlation analysis. The results from the first step are refined by using them as the starting model for the second step, which fits reflections from the top and bottom of the layer. The properties of the target layer influence the amplitudes of top and bottom reflections as well as the traveltime of the bottom reflections; when all these data are used, the inversion is highly overdetermined and all model parameters are estimated accurately. When Gaussian noise is added, the inversion results are very similar to those for the noise-free data because only the coherent signal is fitted. The residual at convergence for the noisy data corresponds to the noise level. Concurrent inversion of data from multiple sources increases the azimuthal illumination of a target.


Sign in / Sign up

Export Citation Format

Share Document