Homotopy solutions of the acoustic eikonal equation for strongly attenuating transversely isotropic media with a vertical symmetry axis
Many applications in seismology involve the modeling of seismic wave traveltimes in anisotropic media. We present homotopy solutions of the acoustic eikonal equation for P-waves traveltimes in attenuating transversely isotropic media with a vertical symmetry axis. Instead of the commonly used perturbation theory, we use the homotopy analysis method to express the traveltimes by a Taylor series expansion over an embedding parameter. For the derivation, we first perform homotopy analysis of the eikonal equation and derive the linearized ordinary differential equations for the coefficients of the Taylor series expansion. Then, we obtain the homotopy solutions for the traveltimes by solving the linearized ordinary differential equations. Results on approximate formulae investigations demonstrate that the analytical expressions are efficient methods for the computation of traveltimes from the eikonal equation. In addition, these formulas are also effective methods for benchmarking approximated solutions in strongly attenuating anisotropic media.