Azimuthal multiple signal classification of dispersive and aliased surface waves recorded in 3D seismic acquisition

Geophysics ◽  
2021 ◽  
pp. 1-84
Author(s):  
Chunying Yang ◽  
Wenchuang Wang

Irregular acquisition geometry causes discontinuities in the appearance of surface wave events, and a large offset causes seismic records to appear as aliased surface waves. The conventional method of sampling data affects the accuracy of the dispersion spectrum and reduces the resolution of surface waves. At the same time, ”mode kissing” of the low-velocity layer and inhomogeneous scatterers requires a high-resolution method for calculating surface wave dispersion. This study tested the use of the multiple signal classification (MUSIC) algorithm in 3D multichannel and aliased wavefield separation. Azimuthal MUSIC is a useful method to estimate the phase velocity spectrum of aliased surface wave data, and it represent the dispersion spectra of low-velocity and inhomogeneous models. The results of this study demonstrate that mode-kissing affects dispersion imaging, and inhomogeneous scatterers change the direction of surface-wave propagation. Surface waves generated from the new propagation directions are also dispersive. The scattered surface wave has a new dispersion pattern different to that of the entire record. Diagonal loading was introduced to improve the robustness of azimuthal MUSIC, and numerical experiments demonstrate the resultant effectiveness of imaging aliasing surface waves. A phase-matched filter was applied to the results of azimuthal MUSIC, and phase iterations were unwrapped in a fast and stable manner. Aliased surface waves and body waves were separated during this process. Overall, field data demonstrate that azimuthal MUSIC and phase-matched filters can successfully separate aliased surface waves.

1967 ◽  
Vol 57 (5) ◽  
pp. 959-981
Author(s):  
Victor Gregson

abstract Elastic waves produced by an impact were recorded at the surface of a solid 12.0 inch diameter steel sphere coated with a 0.3 inch copper layer. Conventional modeling techniques employing both compressional and shear piezoelectric transducers were used to record elastic waves for one millisecond at various points around the great circle of the sphere. Body, PL, and surface waves were observed. Density, layer thickness, compressional and shear-wave velocities were measured so that accurate surface-wave dispersion curves could be computed. Surface-wave dispersion was measured as well as computed. Measured PL mode dispersion compared favorably with theoretical computations. In addition, dispersion curves for Rayleigh, Stoneley, and Love modes were computed. Measured surface-wave dispersion showed Rayleigh and Love modes were observed but not Stoneley modes. Measured dispersion compared favorably with theoretical computations. The curvature correction applied to dispersion calculations in a flat space has been estimated to correct dispersion values at long-wave lengths to about one per cent of correct dispersion in a spherical model. Measured dispersion compared with such flat space dispersion corrected for curvature proved accurate within one per cent at long wave lengths. Two sets of surface waves were observed. One set was associated with body waves radiating outward from impact. The other set was associated with body waves reflecting at the pole opposite impact. For each set of surface waves, measured dispersion compared favorably with computed dispersion.


2019 ◽  
Vol 110 (1) ◽  
pp. 110-126
Author(s):  
Leiph Preston ◽  
Christian Poppeliers ◽  
David J. Schodt

ABSTRACT As a part of the series of Source Physics Experiments (SPE) conducted on the Nevada National Security Site in southern Nevada, we have developed a local-to-regional scale seismic velocity model of the site and surrounding area. Accurate earth models are critical for modeling sources like the SPE to investigate the role of earth structure on the propagation and scattering of seismic waves. We combine seismic body waves, surface waves, and gravity data in a joint inversion procedure to solve for the optimal 3D seismic compressional and shear-wave velocity structures and earthquake locations subject to model smoothness constraints. Earthquakes, which are relocated as part of the inversion, provide P- and S-body-wave absolute and differential travel times. Active source experiments in the region augment this dataset with P-body-wave absolute times and surface-wave dispersion data. Dense ground-based gravity observations and surface-wave dispersion derived from ambient noise in the region fill in many areas where body-wave data are sparse. In general, the top 1–2 km of the surface is relatively poorly sampled by the body waves alone. However, the addition of gravity and surface waves to the body-wave dataset greatly enhances structural resolvability in the near surface. We discuss the methodology we developed for simultaneous inversion of these disparate data types and briefly describe results of the inversion in the context of previous work in the region.


1969 ◽  
Vol 59 (5) ◽  
pp. 2071-2078
Author(s):  
Tom Landers ◽  
Jon F. Claerbout

abstract The inability of simple layered models to fit both Rayleigh wave and Love wave data has led to the proposal of an upper mantle interleaved with thin soft horizontal layers. Since surface-wave dispersion is not sensitive to the distribution of soft material but only to the fraction of soft material a variety of models is possible. The solution to this indeterminancy is found through body-wave analysis. It is shown that body waves are dispersed according to the thinness and softness of the layers. Three models, each of which satisfy all surface-wave data, are examined. Transmission seismograms calculated for these models show one to be impossible, one improbable and the other possible. Synthesis of the seismograms is accomplished through the use of time domain theory as the complicated frequency response of the models makes a frequency oriented Haskell-Thompson approach impractical.


Sign in / Sign up

Export Citation Format

Share Document