Double-scale supervised inversion with a data-driven forward model for low-frequency impedance recovery

Geophysics ◽  
2021 ◽  
pp. 1-102
Author(s):  
Sanyi Yuan ◽  
Shangxu Wang ◽  
Wenjing Sang ◽  
Xinqi Jiao ◽  
Yaneng Luo

Low-frequency information is important in reducing the nonuniqueness of absolute impedance inversion and for quantitative seismic interpretation. In traditional model-driven impedance inversion methods, low-frequency impedance background is from an initial model and is almost unchanged during the inversion process. Moreover, the inversion results are limited by the quality of the modeled seismic data and the extracted wavelet. To alleviate these issues, we investigate a double-scale supervised impedance inversion method based on the gated recurrent encoder-decoder network (GREDN). We first train the decoder network of GREDN called the forward operator, which can map impedance to seismic data. We then implement the well-trained decoder as a constraint to train the encoder network of GREDN called the inverse operator. Besides matching the output of the encoder with broadband pseudo-well impedance labels, data generated by inputting the encoder output into the known decoder match the observed narrowband seismic data. Both the broadband impedance information and the already-trained decoder largely limit the solution space of the encoder. Finally, after training, only the derived optimal encoder is applied to unseen seismic traces to yield broadband impedance volumes. The proposed approach is fully data-driven and does not involve the initial model, seismic wavelet and model-driven operator. Tests on the Marmousi model illustrate that the proposed double-scale supervised impedance inversion method can effectively recover low-frequency components of the impedance model, and demonstrate that low frequencies of the predicted impedance originate from well logs. Furthermore, we apply the strategy of combining the double-scale supervised impedance inversion method with a model-driven impedance inversion method to process field seismic data. Tests on a field data set show that the predicted impedance results not only reveal a classical tectonic sedimentation history, but also match the corresponding results measured at the locations of two wells.

2015 ◽  
Vol 3 (4) ◽  
pp. T197-T206 ◽  
Author(s):  
Xiaotao Wen ◽  
Bo Zhang ◽  
Wayne Pennington ◽  
Zhenhua He

The P-impedance is one of the most important elastic parameters of rocks, and it is commonly used for reservoir characterization. Conventional P-impedance inversion merges a low-frequency log-based model with a high-frequency seismic-derived model. We have proposed a method to estimate the P-impedance by employing dipole-based matching pursuit (DMP) decomposition. The matching pursuit decomposes the seismic traces into a superposition of scaled wavelets, and the associated scalar information represents the reflectivity series, which can be integrated for P-impedance estimation. Unfortunately, DMP analysis is usually performed trace by trace, resulting in a poor lateral continuity. Applying conventional lateral smoothing through mean or median filtering improves the lateral continuity but typically decreases the vertical resolution. We have evaluated an adaptive smoothing strategy that required the filtering to follow bed boundaries in an automated manner, sharpening the boundaries while maintaining the high quality of inversion. We have determined the effectiveness of our algorithm by first applying it to a synthetic wedge model and then to a real seismic data set.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. B281-B287 ◽  
Author(s):  
Xiwu Liu ◽  
Fengxia Gao ◽  
Yuanyin Zhang ◽  
Ying Rao ◽  
Yanghua Wang

We developed a case study of seismic resolution enhancement for shale-oil reservoirs in the Q Depression, China, featured by rhythmic bedding. We proposed an innovative method for resolution enhancement, called the full-band extension method. We implemented this method in three consecutive steps: wavelet extraction, filter construction, and data filtering. First, we extracted a constant-phase wavelet from the entire seismic data set. Then, we constructed the full-band extension filter in the frequency domain using the least-squares inversion method. Finally, we applied the band extension filter to the entire seismic data set. We determined that this full-band extension method, with a stretched frequency band from 7–70 to 2–90 Hz, may significantly enhance 3D seismic resolution and distinguish reflection events of rhythmite groups in shale-oil reservoirs.


2019 ◽  
Vol 7 (3) ◽  
pp. T701-T711
Author(s):  
Jianhu Gao ◽  
Bingyang Liu ◽  
Shengjun Li ◽  
Hongqiu Wang

Hydrocarbon detection is always one of the most critical sections in geophysical exploration, which plays an important role in subsequent hydrocarbon production. However, due to the low signal-to-noise ratio and weak reflection amplitude of deep seismic data, some conventional methods do not always provide favorable hydrocarbon prediction results. The interesting dolomite reservoirs in Central Sichuan are buried over an average depth of 4500 m, and the dolomite rocks have a low porosity below approximately 4%, which is measured by well-logging data. Furthermore, the dominant system of pores and fractures as well as strong heterogeneity along the lateral and vertical directions lead to some difficulties in describing the reservoir distribution. Spectral decomposition (SD) has become successful in illuminating subsurface features and can also be used to identify potential hydrocarbon reservoirs by detecting low-frequency shadows. However, the current applications for hydrocarbon detection always suffer from low resolution for thin reservoirs, probably due to the influence of the window function and without a prior constraint. To address this issue, we developed sparse inverse SD (SISD) based on the wavelet transform, which involves a sparse constraint of time-frequency spectra. We focus on investigating the applications of sparse spectral attributes derived from SISD to deep marine dolomite hydrocarbon detection from a 3D real seismic data set with an area of approximately [Formula: see text]. We predict and evaluate gas-bearing zones in two target reservoir segments by analyzing and comparing the spectral amplitude responses of relatively high- and low-frequency components. The predicted results indicate that most favorable gas-bearing areas are located near the northeast fault zone in the upper reservoir segment and at the relatively high structural positions in the lower reservoir segment, which are in good agreement with the gas-testing results of three wells in the study area.


2020 ◽  
Vol 8 (1) ◽  
pp. T141-T149
Author(s):  
Ritesh Kumar Sharma ◽  
Satinder Chopra ◽  
Larry R. Lines

Multicomponent seismic data offer several advantages for characterizing reservoirs with the use of the vertical component (PP) and mode-converted (PS) data. Joint impedance inversion inverts both of these data sets simultaneously; hence, it is considered superior to simultaneous impedance inversion. However, the success of joint impedance inversion depends on how accurately the PS data are mapped on the PP time domain. Normally, this is attempted by performing well-to-seismic ties for PP and PS data sets and matching different horizons picked on PP and PS data. Although it seems to be a straightforward approach, there are a few issues associated with it. One of them is the lower resolution of the PS data compared with the PP data that presents difficulties in the correlation of the equivalent reflection events on both the data sets. Even after a few consistent horizons get tracked, the horizon matching process introduces some artifacts on the PS data when mapped into PP time. We have evaluated such challenges using a data set from the Western Canadian Sedimentary Basin and then develop a novel workflow for addressing them. The importance of our workflow was determined by comparing data examples generated with and without its adoption.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. R59-R67 ◽  
Author(s):  
Igor B. Morozov ◽  
Jinfeng Ma

The seismic-impedance inversion problem is underconstrained inherently and does not allow the use of rigorous joint inversion. In the absence of a true inverse, a reliable solution free from subjective parameters can be obtained by defining a set of physical constraints that should be satisfied by the resulting images. A method for constructing synthetic logs is proposed that explicitly and accurately satisfies (1) the convolutional equation, (2) time-depth constraints of the seismic data, (3) a background low-frequency model from logs or seismic/geologic interpretation, and (4) spectral amplitudes and geostatistical information from spatially interpolated well logs. The resulting synthetic log sections or volumes are interpretable in standard ways. Unlike broadly used joint-inversion algorithms, the method contains no subjectively selected user parameters, utilizes the log data more completely, and assesses intermediate results. The procedure is simple and tolerant to noise, and it leads to higher-resolution images. Separating the seismic and subseismic frequency bands also simplifies data processing for acoustic-impedance (AI) inversion. For example, zero-phase deconvolution and true-amplitude processing of seismic data are not required and are included automatically in this method. The approach is applicable to 2D and 3D data sets and to multiple pre- and poststack seismic attributes. It has been tested on inversions for AI and true-amplitude reflectivity using 2D synthetic and real-data examples.


2017 ◽  
Vol 5 (4) ◽  
pp. T523-T530
Author(s):  
Ehsan Zabihi Naeini ◽  
Mark Sams

Broadband reprocessed seismic data from the North West Shelf of Australia were inverted using wavelets estimated with a conventional approach. The inversion method applied was a facies-based inversion, in which the low-frequency model is a product of the inversion process itself, constrained by facies-dependent input trends, the resultant facies distribution, and the match to the seismic. The results identified the presence of a gas reservoir that had recently been confirmed through drilling. The reservoir is thin, with up to 15 ms of maximum thickness. The bandwidth of the seismic data is approximately 5–70 Hz, and the well data used to extract the wavelet used in the inversion are only 400 ms long. As such, there was little control on the lowest frequencies of the wavelet. Different wavelets were subsequently estimated using a variety of new techniques that attempt to address the limitations of short well-log segments and low-frequency seismic. The revised inversion showed greater gas-sand continuity and an extension of the reservoir at one flank. Noise-free synthetic examples indicate that thin-bed delineation can depend on the accuracy of the low-frequency content of the wavelets used for inversion. Underestimation of the low-frequency contents can result in missing thin beds, whereas underestimation of high frequencies can introduce false thin beds. Therefore, it is very important to correctly capture the full frequency content of the seismic data in terms of the amplitude and phase spectra of the estimated wavelets, which subsequently leads to a more accurate thin-bed reservoir characterization through inversion.


Geophysics ◽  
2002 ◽  
Vol 67 (6) ◽  
pp. 1877-1885 ◽  
Author(s):  
Xin‐Quan Ma

A new prestack inversion algorithm has been developed to simultaneously estimate acoustic and shear impedances from P‐wave reflection seismic data. The algorithm uses a global optimization procedure in the form of simulated annealing. The goal of optimization is to find a global minimum of the objective function, which includes the misfit between synthetic and observed prestack seismic data. During the iterative inversion process, the acoustic and shear impedance models are randomly perturbed, and the synthetic seismic data are calculated and compared with the observed seismic data. To increase stability, constraints have been built into the inversion algorithm, using the low‐frequency impedance and background Vs/Vp models. The inversion method has been successfully applied to synthetic and field data examples to produce acoustic and shear impedances comparable to log data of similar bandwidth. The estimated acoustic and shear impedances can be combined to derive other elastic parameters, which may be used for identifying of lithology and fluid content of reservoirs.


2016 ◽  
Vol 4 (4) ◽  
pp. T577-T589 ◽  
Author(s):  
Haitham Hamid ◽  
Adam Pidlisecky

In complex geology, the presence of highly dipping structures can complicate impedance inversion. We have developed a structurally constrained inversion in which a computationally well-behaved objective function is minimized subject to structural constraints. This approach allows the objective function to incorporate structural orientation in the form of dips into our inversion algorithm. Our method involves a multitrace impedance inversion and a rotation of an orthogonal system of derivative operators. Local dips used to constrain the derivative operators were estimated from migrated seismic data. In addition to imposing structural constraints on the inversion model, this algorithm allows for the inclusion of a priori knowledge from boreholes. We investigated this algorithm on a complex synthetic 2D model as well as a seismic field data set. We compared the result obtained with this approach with the results from single trace-based inversion and laterally constrained inversion. The inversion carried out using dip information produces a model that has higher resolution that is more geologically realistic compared with other methods.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. M1-M13 ◽  
Author(s):  
Yichuan Wang ◽  
Igor B. Morozov

For seismic monitoring injected fluids during enhanced oil recovery or geologic [Formula: see text] sequestration, it is useful to measure time-lapse (TL) variations of acoustic impedance (AI). AI gives direct connections to the mechanical and fluid-related properties of the reservoir or [Formula: see text] storage site; however, evaluation of its subtle TL variations is complicated by the low-frequency and scaling uncertainties of this attribute. We have developed three enhancements of TL AI analysis to resolve these issues. First, following waveform calibration (cross-equalization) of the monitor seismic data sets to the baseline one, the reflectivity difference was evaluated from the attributes measured during the calibration. Second, a robust approach to AI inversion was applied to the baseline data set, based on calibration of the records by using the well-log data and spatially variant stacking and interval velocities derived during seismic data processing. This inversion method is straightforward and does not require subjective selections of parameterization and regularization schemes. Unlike joint or statistical inverse approaches, this method does not require prior models and produces accurate fitting of the observed reflectivity. Third, the TL AI difference is obtained directly from the baseline AI and reflectivity difference but without the uncertainty-prone subtraction of AI volumes from different seismic vintages. The above approaches are applied to TL data sets from the Weyburn [Formula: see text] sequestration project in southern Saskatchewan, Canada. High-quality baseline and TL AI-difference volumes are obtained. TL variations within the reservoir zone are observed in the calibration time-shift, reflectivity-difference, and AI-difference images, which are interpreted as being related to the [Formula: see text] injection.


Sign in / Sign up

Export Citation Format

Share Document