Reflection angle/azimuth-dependent least-squares reverse-time migration

Geophysics ◽  
2021 ◽  
pp. 1-68
Author(s):  
Eric Duveneck ◽  
Michael Kiehn ◽  
Anu Chandran ◽  
Thomas Kühnel

Seismic images under complex overburdens like salt are strongly affected by illumination variations due to overburden velocity variations and imperfect acquisition geometries, making it difficult to obtain reliable image amplitudes. Least-squares reverse-time migration (LSRTM) addresses these issues by formulating full wave-equation imaging as a linear inverse problem and solving for a reflectivity model that explains the recorded seismic data. Because subsurface reflection coefficients depend on the incident angle, and possibly on azimuth, quantitative interpretation under complex overburdens requires LSRTM with output in terms of image gathers, e.g., as a function of reflection angle or angle and azimuth. We present a reflection angle- or angle/azimuth-dependent LSRTM method aimed at obtaining physically meaningful image amplitudes interpretable in terms of angle- or angle/azimuth-dependent reflection coefficients. The method is formulated as a linear inverse problem solved iteratively with the conjugate gradient method. It requires an adjoint pair of linear operators for reflection angle/azimuth-dependent migration and demigration based on full wave-equation propagation. We implement these operators in an efficient way by using a mapping approach between migrated shot gathers and subsurface reflection angle/azimuth gathers. To accelerate convergence of the iterative inversion, we apply image-domain preconditioning operators computed from a single de-remigration step. An angle continuity constraint and a structural dip constraint, implemented via shaping regularization, are used to stabilize the solution in the presence of limited illumination and to control the effects of coherent noise. We demonstrate the method on a synthetic data example and on a wide-azimuth streamer dataset from the Gulf of Mexico, where we show that angle/azimuth-dependent LSRTM can achieve significant uplift in subsalt image quality, with overburden- and acquisition-related illumination variation effects on angle/azimuth-dependent image amplitudes largely removed.

2019 ◽  
Author(s):  
Anu Chandran ◽  
Thomas Kühnel ◽  
Farhad Bazargani ◽  
Michael Kiehn ◽  
Dung Nguyen ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 3010
Author(s):  
Hao Liu ◽  
Xuewei Liu

The lack of an initial condition is one of the major challenges in full-wave-equation depth extrapolation. This initial condition is the vertical partial derivative of the surface wavefield and cannot be provided by the conventional seismic acquisition system. The traditional solution is to use the wavefield value of the surface to calculate the vertical partial derivative by assuming that the surface velocity is constant. However, for seismic exploration on land, the surface velocity is often not uniform. To solve this problem, we propose a new method for calculating the vertical partial derivative from the surface wavefield without making any assumptions about the surface conditions. Based on the calculated derivative, we implemented a depth-extrapolation-based full-wave-equation migration from topography using the direct downward continuation. We tested the imaging performance of our proposed method with several experiments. The results of the Marmousi model experiment show that our proposed method is superior to the conventional reverse time migration (RTM) algorithm in terms of imaging accuracy and amplitude-preserving performance at medium and deep depths. In the Canadian Foothills model experiment, we proved that our method can still accurately image complex structures and maintain amplitude under topographic scenario.


Geophysics ◽  
2021 ◽  
pp. 1-65
Author(s):  
Yingming Qu ◽  
Yixin Wang ◽  
Zhenchun Li ◽  
Chang Liu

Seismic wave attenuation caused by subsurface viscoelasticity reduces the quality of migration and the reliability of interpretation. A variety of Q-compensated migration methods have been developed based on the second-order viscoacoustic quasidifferential equations. However, these second-order wave-equation-based methods are difficult to handle with density perturbation and surface topography. In addition, the staggered grid scheme, which has an advantage over the collocated grid scheme because of its reduced numerical dispersion and enhanced stability, works in first-order wave-equation-based methods. We have developed a Q least-squares reverse time migration method based on the first-order viscoacoustic quasidifferential equations by deriving Q-compensated forward-propagated operators, Q-compensated adjoint operators, and Q-attenuated Born modeling operators. Besides, our method using curvilinear grids is available even when the attenuating medium has surface topography and can conduct Q-compensated migration with density perturbation. The results of numerical tests on two synthetic and a field data sets indicate that our method improves the imaging quality with iterations and produces better imaging results with clearer structures, higher signal-to-noise ratio, higher resolution, and more balanced amplitude by correcting the energy loss and phase distortion caused by Q attenuation. It also suppresses the scattering and diffracted noise caused by the surface topography.


Geophysics ◽  
2021 ◽  
pp. 1-60
Author(s):  
Chuang Li ◽  
Zhaoqi Gao ◽  
Jinghuai Gao ◽  
Feipeng Li ◽  
Tao Yang

Angle-domain common-image gathers (ADCIGs) that can be used for migration velocity analysis and amplitude versus angle analysis are important for seismic exploration. However, because of limited acquisition geometry and seismic frequency band, the ADCIGs extracted by reverse time migration (RTM) suffer from illumination gaps, migration artifacts, and low resolution. We have developed a reflection angle-domain pseudo-extended plane-wave least-squares RTM method for obtaining high-quality ADCIGs. We build the mapping relations between the ADCIGs and the plane-wave sections using an angle-domain pseudo-extended Born modeling operator and an adjoint operator, based on which we formulate the extraction of ADCIGs as an inverse problem. The inverse problem is iteratively solved by a preconditioned stochastic conjugate gradient method, allowing for reduction in computational cost by migrating only a subset instead of the whole dataset and improving image quality thanks to preconditioners. Numerical tests on synthetic and field data verify that the proposed method can compensate for illumination gaps, suppress migration artifacts, and improve resolution of the ADCIGs and the stacked images. Therefore, compared with RTM, the proposed method provides a more reliable input for migration velocity analysis and amplitude versus angle analysis. Moreover, it also provides much better stacked images for seismic interpretation.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. S185-S198
Author(s):  
Chuang Li ◽  
Jinghuai Gao ◽  
Zhaoqi Gao ◽  
Rongrong Wang ◽  
Tao Yang

Diffraction imaging is important for high-resolution characterization of small subsurface heterogeneities. However, due to geometry limitations and noise distortion, conventional diffraction imaging methods may produce low-quality images. We have adopted a periodic plane-wave least-squares reverse time migration method for diffractions to improve the image quality of heterogeneities. The method reformulates diffraction imaging as an inverse problem using the Born modeling operator and its adjoint operator derived in the periodic plane-wave domain. The inverse problem is implemented for diffractions separated by a plane-wave destruction filter from the periodic plane-wave sections. Because the plane-wave destruction filter may fail to eliminate hyperbolic reflections and noise, we adopt a hyperbolic misfit function to minimize a weighted residual using an iteratively reweighted least-squares algorithm and thereby reduce residual reflections and noise. Synthetic and field data tests show that the adopted method can significantly improve the image quality of subsalt and deep heterogeneities. Compared with reverse time migration, it produces better images with fewer artifacts, higher resolution, and more balanced amplitude. Therefore, the adopted method can accurately characterize small heterogeneities and provide a reliable input for seismic interpretation in the prediction of hydrocarbon reservoirs.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. S199-S216
Author(s):  
Xinru Mu ◽  
Jianping Huang ◽  
Jidong Yang ◽  
Xu Guo ◽  
Yundong Guo

Anisotropy is a common phenomenon in subsurface strata and should be considered in seismic imaging and inversion. Seismic imaging in a vertical transversely isotropic (VTI) medium does not take into account the effects of the tilt angles, which can lead to degraded migrated images in areas with strong anisotropy. To correct such waveform distortion, reduce related image artifacts, and improve migration resolution, a tilted transversely isotropic (TTI) least-squares reverse time migration (LSRTM) method is presented. In the LSRTM, a pure qP-wave equation is used and solved with the finite-difference method. We have analyzed the stability condition for the pure qP-wave equation using the matrix method, which is used to ensure the stability of wave propagation in the TTI medium. Based on this wave equation, we derive a corresponding demigration (Born modeling) and adjoint migration operators to implement TTI LSRTM. Numerical tests on the synthetic data show the advantages of TTI LSRTM over VTI RTM and VTI LSRTM when the recorded data contain strong effects caused by large tilt angles. Our numerical experiments illustrate that the sensitivity of the adopted TTI LSRTM to the migration velocity errors is much higher than that to the anisotropic parameters (including epsilon, delta, and tilted angle parameters), and its sensitivity to the epsilon model and tilt angle is higher than that to the delta model.


Geophysics ◽  
2021 ◽  
pp. 1-48
Author(s):  
Mikhail Davydenko ◽  
Eric Verschuur

Waveform inversion based on Least-Squares Reverse Time Migration (LSRTM) usually involves Born modelling, which models the primary-only data. As a result the inversion process handles only primaries and corresponding multiple elimination pre-processing of the input data is required prior to imaging and inversion. Otherwise, multiples left in the input data are mapped as false reflectors, also known as crosstalk, in the final image. At the same time the developed Full Wavefield Migration (FWM) methodology can handle internal multiples in an inversion-based imaging process. However, because it is based on the framework of the one-way wave equation, it cannot image dips close to and beyond 90 degrees. Therefore, we aim at upgrading LSRTM framework by bringing functionality of FWM to handle internal multiples. We have discovered that the secondary source term, used in the original formulation of FWM to define a wavefield relationship that allows to model multiple scattering via reflectivity, can be injected into a pressure component when simulating the two-way wave equation using finite-difference modelling. We use this modified forward model for estimating the reflectivity model with automatic crosstalk supression and validate the method on both synthetic and field data containing visible internal multiples.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. S1-S13 ◽  
Author(s):  
Linan Xu ◽  
Mauricio D. Sacchi

We have investigated the problem of designing the forward operator and its exact adjoint for two-way wave-equation least-squares migration. We study the problem in the time domain and pay particular attention to the individual operators that are required by the algorithm. We derive our algorithm using the language of linear algebra and establish a simple path to design forward and adjoint operators that pass the dot-product test. We also found that the exact adjoint operator is not equal to the classic reverse time migration algorithm. For instance, one must pay particular attention to boundary conditions to compute the exact adjoint that accurately passes the dot-product test. Forward and adjoint operators are adopted to solve the so-called least-squares reverse time migration problem via the method of conjugate gradients. We also examine a preconditioning strategy to invert extended images.


Sign in / Sign up

Export Citation Format

Share Document