PERTURBATION OF PHASE VELOCITIES IN ELASTIC ORTHORHOMBIC MEDIA

Geophysics ◽  
2021 ◽  
pp. 1-109
Author(s):  
Alexey Stovas ◽  
Yuriy Roganov ◽  
Vyacheslav Roganov

The parameterization of anisotropic models is very important when focusing on specific signatures of seismic waves and reducing the parameters crosstalk involved in inverting seismic data. The parameterization is strongly dependent on the problem at hand. We propose a new parameterization for an elastic orthorhombic model with on-axes P- and S-wave velocities and new symmetric anelliptic parameters. The perturbation approach is well defined for P waves in acoustic orthorhombic media. In the elastic orthorhombic media, the P-wave perturbation coefficients are very similar to their acoustic counterparts. However, the S-waves perturbation coefficients are still unknown. The perturbation coefficients can be interpreted as sensitivity coefficients, and they are important in many applications. We apply the second-order perturbation in anelliptic parameters for P, S1 and S2 wave phase velocities in elastic orthorhombic model. We show that using the conventional method some perturbation coefficients for S waves are not defined in the vicinity of the singularity point in an elliptical background model. Thus, we propose an alternative perturbation approach that overcomes this problem. We compute the first- and second-order perturbation coefficients for P and S waves. The perturbation-based approximations are very accurate for P and S waves compared with exact solutions, based on a numerical example. The reductions to transversely isotropic and acoustic orthorhombic models are also considered for analysis. We also show how perturbations in anelliptic parameters affect S-wave triplications in an elastic orthorhombic model.

Geophysics ◽  
2001 ◽  
Vol 66 (5) ◽  
pp. 1519-1527 ◽  
Author(s):  
Robert Sun ◽  
George A. McMechan

Reflected P‐to‐P and P‐to‐S converted seismic waves in a two‐component elastic common‐source gather generated with a P‐wave source in a two‐dimensional model can be imaged by two independent scalar reverse‐time depth migrations. The inputs to migration are pure P‐ and S‐waves that are extracted by divergence and curl calculations during (shallow) extrapolation of the elastic data recorded at the earth’s surface. For both P‐to‐P and P‐to‐S converted reflected waves, the imaging time at each point is the P‐wave traveltime from the source to that point. The extracted P‐wave is reverse‐time extrapolated and imaged with a P‐velocity model, using a finite difference solution of the scalar wave equation. The extracted S‐wave is reverse‐time extrapolated and imaged similarly, but with an S‐velocity model. Converted S‐wave data requires a polarity correction prior to migration to ensure constructive interference between data from adjacent sources. Synthetic examples show that the algorithm gives satisfactory results for laterally inhomogeneous models.


2020 ◽  
Author(s):  
Louise Watremez ◽  
Sylvie Leroy ◽  
Elia d'Acremont ◽  
Stéphane Rouzo

<p>The Gulf of Aden is a young and active oceanic basin, which separates the south-eastern margin of the Arabian Plate from the Somali Plate. The rifting leading to the formation of the north-eastern Gulf of Aden passive margin started ca. 34 Ma ago when the oceanic spreading in this area initiated at least 17.6 Ma ago. The opening direction (N26°E) is oblique to the mean orientation of the Gulf (N75°E), leading to a strong structural segmentation.</p><p>The Encens cruise (2006) allowed for the acquisition of a large seismic refraction dataset with profiles across (6 lines) and along (3 lines) the margin, between the Alula-Fartak and Socotra-Hadbeen fracture zones, which define a first order segment of the Gulf. P-wave velocity modelling already allowed us to image the crustal thinning and the structures, from continental to oceanic domains, along some of the profiles. A lower crustal intermediate body is observed in the Ashawq-Salalah segment, at the base of the transitional and oceanic crusts. The nature of this intermediate body is most probably mafic, linked to a post-rift thermal anomaly. The thin (1-2 km) sediment layer in the study area allows for a clear conversion of P-waves to S-waves at the top basement. Thus, most seismic refraction records show very clear S-wave arrivals.</p><p>In this study, we use both P-wave and S-wave arrivals to delineate the crustal structures and segmentation along and across the margin and add insight into the nature of the rocks below the acoustic basement. P-wave velocity modelling allows for the delineation of the structure variations across and along the margin. The velocity models are used as a base for the S-wave modelling, through the definition of Poisson’s ratios in the different areas of the models. Picking and modelling of S-wave arrivals allow us to identify two families of converted waves: (1) seismic waves converted at the basement interface on the way up, just before arriving to the OBS and (2) seismic waves converted at the basement on the way down, which travelled into the deep structures as S-waves. The first set of arrivals allows for the estimation the S-wave velocities (Poisson’s ratio) in the sediments, showing that the sediments in this area are unconsolidated and water saturated. The second set of arrivals gives us constraints on the S-wave velocities below the acoustic basement. This allows for an improved mapping of the transitional and oceanic domains and the confirmation of the mafic nature of the lower crustal intermediate body.</p>


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 231-240 ◽  
Author(s):  
Lasse Amundsen ◽  
Arne Reitan

At the boundary between two solid media in welded contact, all three components of particle velocity and vertical traction are continuous through the boundary. Across the boundary between a fluid and a solid, however, only the vertical component of particle velocity is continuous while the horizontal components can be discontinuous. Furthermore, the pressure in the fluid is the negative of the vertical component of traction in the solid, while the horizontal components of traction vanish at the interface. Taking advantage of this latter fact, we show that total P‐ and S‐waves can be computed from the vertical component of the particle velocity recorded by single component geophones planted on the sea floor. In the case when the sea floor is transversely isotropic with a vertical axis of symmetry, the computation requires the five independent elastic stiffness components and the density. However, when the sea floor material is fully isotropic, the only material parameter needed is the local shear wave velocity. The analysis of the extraction problem is done in the slowness domain. We show, however, that the S‐wave section can be obtained by a filtering operation in the space‐frequency domain. The P‐wave section is then the difference between the vertical component of the particle velocity and the S‐wave component. A synthetic data example demonstrates the performance of the algorithm.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. D101-D116
Author(s):  
Julius K. von Ketelhodt ◽  
Musa S. D. Manzi ◽  
Raymond J. Durrheim ◽  
Thomas Fechner

Joint P- and S-wave measurements for tomographic cross-borehole analysis can offer more reliable interpretational insight concerning lithologic and geotechnical parameter variations compared with P-wave measurements on their own. However, anisotropy can have a large influence on S-wave measurements, with the S-wave splitting into two modes. We have developed an inversion for parameters of transversely isotropic with a vertical symmetry axis (VTI) media. Our inversion is based on the traveltime perturbation equation, using cross-gradient constraints to ensure structural similarity for the resulting VTI parameters. We first determine the inversion on a synthetic data set consisting of P-waves and vertically and horizontally polarized S-waves. Subsequently, we evaluate inversion results for a data set comprising jointly measured P-waves and vertically and horizontally polarized S-waves that were acquired in a near-surface ([Formula: see text]) aquifer environment (the Safira research site, Germany). The inverted models indicate that the anisotropy parameters [Formula: see text] and [Formula: see text] are close to zero, with no P-wave anisotropy present. A high [Formula: see text] ratio of up to nine causes considerable SV-wave anisotropy despite the low magnitudes for [Formula: see text] and [Formula: see text]. The SH-wave anisotropy parameter [Formula: see text] is estimated to be between 0.05 and 0.15 in the clay and lignite seams. The S-wave splitting is confirmed by polarization analysis prior to the inversion. The results suggest that S-wave anisotropy may be more severe than P-wave anisotropy in near-surface environments and should be taken into account when interpreting cross-borehole S-wave data.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. C21-C33 ◽  
Author(s):  
Hongwei Wang ◽  
Suping Peng ◽  
Wenfeng Du

With the incident P-wave, we derive approximate formulas for amplitudes and polarizations of waves reflected from and transmitted through a planar, horizontal boundary between an overlying isotropic medium and an underlying tilted transversely isotropic (TTI) medium assuming that the directions of the phase and group velocities are consistent. Provided that the velocities in the isotropic medium are equal to the velocities along the symmetry axis direction, we derive the relational expression between the propagation angle in the TTI medium and the propagation angle in the hypothetical isotropic medium, under the condition that the horizontal slowness is the same, and then we update the approximate formula of the polarization in the TTI medium. Provided that the slow and fast transverse waves (qS and SH) are generated simultaneously in the anisotropic interface, we linearize for a six-order Zoeppritz equation, derive the azimuthal formula of longitudinal and S-waves, and determine their detailed expressions within the symmetry axis plane. According to the derived azimuthal AVO formula, we establish medium models, compare the derived AVO with the precision, and obtain the following conclusions: (1) The dip angle for the symmetry axis with respect to the vertical may have a sufficiently large impact on AVO, and the vertical longitudinal wave can generate an S-wave. (2) For the derived AVO formula, within the symmetry axis plane, the fitting effect of the approximate and exact formulas is good; however, within the other incident planes, taking the azimuth angle 45° as an example, the approximation is suitable for the large impedance contrast if the anisotropic parameters are set properly. (3) The error between the approximation and precision is mainly caused by the difference between the reflected and transmitted angles, the velocities’ derivation with respect to azimuth, and the division of approximation into isotropic and anisotropic parts.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 309-318 ◽  
Author(s):  
Jorge O. Parra

The transversely isotropic poroelastic wave equation can be formulated to include the Biot and the squirt‐flow mechanisms to yield a new analytical solution in terms of the elements of the squirt‐flow tensor. The new model gives estimates of the vertical and the horizontal permeabilities, as well as other measurable rock and fluid properties. In particular, the model estimates phase velocity and attenuation of waves traveling at different angles of incidence with respect to the principal axis of anisotropy. The attenuation and dispersion of the fast quasi P‐wave and the quasi SV‐wave are related to the vertical and the horizontal permeabilities. Modeling suggests that the attenuation of both the quasi P‐wave and quasi SV‐wave depend on the direction of permeability. For frequencies from 500 to 4500 Hz, the quasi P‐wave attenuation will be of maximum permeability. To test the theory, interwell seismic waveforms, well logs, and hydraulic conductivity measurements (recorded in the fluvial Gypsy sandstone reservoir, Oklahoma) provide the material and fluid property parameters. For example, the analysis of petrophysical data suggests that the vertical permeability (1 md) is affected by the presence of mudstone and siltstone bodies, which are barriers to vertical fluid movement, and the horizontal permeability (1640 md) is controlled by cross‐bedded and planar‐laminated sandstones. The theoretical dispersion curves based on measurable rock and fluid properties, and the phase velocity curve obtained from seismic signatures, give the ingredients to evaluate the model. Theoretical predictions show the influence of the permeability anisotropy on the dispersion of seismic waves. These dispersion values derived from interwell seismic signatures are consistent with the theoretical model and with the direction of propagation of the seismic waves that travel parallel to the maximum permeability. This analysis with the new analytical solution is the first step toward a quantitative evaluation of the preferential directions of fluid flow in reservoir formation containing hydrocarbons. The results of the present work may lead to the development of algorithms to extract the permeability anisotropy from attenuation and dispersion data (derived from sonic logs and crosswell seismics) to map the fluid flow distribution in a reservoir.


Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. D283-D291 ◽  
Author(s):  
Peng Liu ◽  
Wenxiao Qiao ◽  
Xiaohua Che ◽  
Xiaodong Ju ◽  
Junqiang Lu ◽  
...  

We have developed a new 3D acoustic logging tool (3DAC). To examine the azimuthal resolution of 3DAC, we have evaluated a 3D finite-difference time-domain model to simulate a case in which the borehole penetrated a rock formation boundary when the tool worked at the azimuthal-transmitting-azimuthal-receiving mode. The results indicated that there were two types of P-waves with different slowness in waveforms: the P-wave of the harder rock (P1) and the P-wave of the softer rock (P2). The P1-wave can be observed in each azimuthal receiver, but the P2-wave appears only in the azimuthal receivers toward the softer rock. When these two types of rock are both fast formations, two types of S-waves also exist, and they have better azimuthal sensitivity compared with P-waves. The S-wave of the harder rock (S1) appears only in receivers toward the harder rock, and the S-wave of the softer rock (S2) appears only in receivers toward the softer rock. A model was simulated in which the boundary between shale and sand penetrated the borehole but not the borehole axis. The P-wave of shale and the S-wave of sand are azimuthally sensitive to the azimuth angle variation of two formations. In addition, waveforms obtained from 3DAC working at the monopole-transmitting-azimuthal-receiving mode indicate that the corresponding P-waves and S-waves are azimuthally sensitive, too. Finally, we have developed a field example of 3DAC to support our simulation results: The azimuthal variation of the P-wave slowness was observed and can thus be used to reflect the azimuthal heterogeneity of formations.


2020 ◽  
Vol 221 (3) ◽  
pp. 1765-1776 ◽  
Author(s):  
Jia Wei ◽  
Li-Yun Fu ◽  
Zhi-Wei Wang ◽  
Jing Ba ◽  
José M Carcione

SUMMARY The Lord–Shulman thermoelasticity theory combined with Biot equations of poroelasticity, describes wave dissipation due to fluid and heat flow. This theory avoids an unphysical behaviour of the thermoelastic waves present in the classical theory based on a parabolic heat equation, that is infinite velocity. A plane-wave analysis predicts four propagation modes: the classical P and S waves and two slow waves, namely, the Biot and thermal modes. We obtain the frequency-domain Green's function in homogeneous media as the displacements-temperature solution of the thermo-poroelasticity equations. The numerical examples validate the presence of the wave modes predicted by the plane-wave analysis. The S wave is not affected by heat diffusion, whereas the P wave shows an anelastic behaviour, and the slow modes present a diffusive behaviour depending on the viscosity, frequency and thermoelasticity properties. In heterogeneous media, the P wave undergoes mesoscopic attenuation through energy conversion to the slow modes. The Green's function is useful to study the physics in thermoelastic media and test numerical algorithms.


2019 ◽  
Vol 220 (1) ◽  
pp. 393-403 ◽  
Author(s):  
Zhi-Wei Wang ◽  
Li-Yun Fu ◽  
Jia Wei ◽  
Wanting Hou ◽  
Jing Ba ◽  
...  

SUMMARY Thermoelasticity extends the classical elastic theory by coupling the fields of particle displacement and temperature. The classical theory of thermoelasticity, based on a parabolic-type heat-conduction equation, is characteristic of an unphysical behaviour of thermoelastic waves with discontinuities and infinite velocities as a function of frequency. A better physical system of equations incorporates a relaxation term into the heat equation; the equations predict three propagation modes, namely, a fast P wave (E wave), a slow thermal P wave (T wave), and a shear wave (S wave). We formulate a second-order tensor Green's function based on the Fourier transform of the thermodynamic equations. It is the displacement–temperature solution to a point (elastic or heat) source. The snapshots, obtained with the derived second-order tensor Green's function, show that the elastic and thermal P modes are dispersive and lossy, which is confirmed by a plane-wave analysis. These modes have similar characteristics of the fast and slow P waves of poroelasticity. Particularly, the thermal mode is diffusive at low thermal conductivities and becomes wave-like for high thermal conductivities.


2001 ◽  
Vol 01 (01) ◽  
pp. R41-R50 ◽  
Author(s):  
DUNCAN P. McLEOD ◽  
B. TOM KING ◽  
GEOFFREY E. STEDMAN ◽  
K. ULRICH SCHREIBER ◽  
TERRY H. WEBB

The second-order autoregressive AR(2) model is used to analyze rotational data for seismic events captured by a large ring laser gyroscope. Both the Sagnac frequency and linewidth estimates obtained from this model sense the rotational components of seismic waves. An event of magnitude M L = 6.5 at a distance of D = 5.4° from a large ring laser gyroscope operating at its quantum limit is used to compare the AR(2) model with the previous analytical phase angle method of analysis. The frequency, linewidth and analytic phase angle data each satisfactorily estimate the rotation magnitude. The direct detection of rotational motion in the P wave coda is observed, demonstrating the conversion to transverse S wave polarizations by the local geology.


Sign in / Sign up

Export Citation Format

Share Document