Surface-offset gathers from elastic reverse time migration and velocity analysis

Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. S47-S64
Author(s):  
Yang Zhao ◽  
Tao Liu ◽  
Xueyi Jia ◽  
Hongwei Liu ◽  
Zhiguang Xue ◽  
...  

Angle-domain common-image gathers (ADCIGs) from elastic reverse time migration (ERTM) are valuable tools for seismic elastic velocity estimation. Traditional ADCIGs are based on the concept of common-offset domains, but common-shot domain implementations are often favored for computational cost considerations. Surface-offset gathers (SOGs) built from common-offset migration may serve as an alternative to the common-shot ADCIGs. We have developed a theoretical kinematic framework between these two domains, and we determined that the common SOG gives an alternative measurement of kinematic correctness in the presence of incorrect velocity. Specifically, we exploit analytical expressions for the image misposition between these two domains, with respect to the traveltime perturbation caused by velocity errors. Four formulations of the PP and PS residual moveout functions are derived and provide insightful information of the velocity error, angle, and PS velocity ratio contained in ERTM gathers. The analytical solutions are validated with homogeneous examples with a series of varied parameters. We found that the SOGs may perform in the way of simplicity and linearity as an alternative to the common-shot migration. To make a full comparison with ADCIGs, we have developed a cost-effective workflow of ERTM SOGs. A fast vector P- and S-wave decomposition can be obtained via spatial gradients at selected time steps. A selected ERTM imaging condition is then modified in which the migration is done by offset groups between each source and receiver pair for each P- and S-wave decomposition. Two synthetic (marine and land) examples are used to demonstrate the feasibility of our methods.

Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Milad Farshad ◽  
Hervé Chauris

Elastic least-squares reverse time migration is the state-of-the-art linear imaging technique to retrieve high-resolution quantitative subsurface images. A successful application requires many migration/modeling cycles. To accelerate the convergence rate, various pseudoinverse Born operators have been proposed, providing quantitative results within a single iteration, while having roughly the same computational cost as reverse time migration. However, these are based on the acoustic approximation, leading to possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic media to account for the elastic amplitudes of PP reflections and provide an estimate of physical density, P- and S-wave impedance models. We restrict the extension to marine environment, with the recording of pressure waves at the receiver positions. Firstly, we replace the acoustic Green's functions by their elastic version, without modifying the structure of the original pseudoinverse Born operator. We then apply a Radon transform to the results of the first step to calculate the angle-dependent response. Finally, we simultaneously invert for the physical parameters using a weighted least-squares method. Through numerical experiments, we first illustrate the consequences of acoustic approximation on elastic data, leading to inaccurate parameter inversion as well as to artificial reflector inclusion. Then we demonstrate that our method can simultaneously invert for elastic parameters in the presence of complex uncorrelated structures, inaccurate background models, and Gaussian noisy data.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. S399-S408 ◽  
Author(s):  
Yunyue Elita Li ◽  
Yue Du ◽  
Jizhong Yang ◽  
Arthur Cheng ◽  
Xinding Fang

Elastic wave imaging has been a significant challenge in the exploration industry due to the complexities in wave physics and numerical implementation. We have separated the governing equations for P- and S-wave propagation without the assumptions of homogeneous Lamé parameters to capture the mode conversion between the two body waves in an isotropic, constant-density medium. The resulting set of two coupled second-order equations for P- and S-potentials clearly demonstrates that mode conversion only occurs at the discontinuities of the shear modulus. Applying the Born approximation to the new equations, we derive the PP, PS, SP, and SS imaging conditions from the first gradients of waveform matching objective functions. The resulting images are consistent with the physical perturbations of the elastic parameters, and, hence, they are automatically free of the polarity reversal artifacts in the converted images. When implementing elastic reverse time migration (RTM), we find that scalar wave equations can be used to back propagate the recorded P-potential, as well as individual components in the vector field of the S-potential. Compared with conventional elastic RTM, the proposed elastic RTM implementation using acoustic propagators not only simplifies the imaging condition, it but also reduces the computational cost and the artifacts in the images. We have determined the accuracy of our method using 2D and 3D numerical examples.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. S383-S398 ◽  
Author(s):  
Chenlong Wang ◽  
Jiubing Cheng ◽  
Børge Arntsen

Recording P- and S-wave modes acquires more information related to rock properties of the earth’s interior. Elastic migration, as a part of multicomponent seismic data processing, potentially offers a great improvement over conventional acoustic migration to create a spatial image of some medium properties. In the framework of elastic reverse time migration, we have developed new scalar and vector imaging conditions assisted by efficient polarization-based mode decoupling to avoid crosstalk among the different wave modes for isotropic and transversely isotropic media. For the scalar imaging, we corrected polarity reversal of zero-lag PS images using the local angular attributes on the fly of angle-domain imaging. For the vector imaging, we naturally used the polarization information in the decoupled single-mode vector fields to automatically avoid the polarity reversal and to estimate the local angular attributes for angle-domain imaging. Examples of increasing complexity in 2D and 3D cases found that the proposed approaches can be used to obtain a physically interpretable image and angle-domain common-image gather at an acceptable computational cost. Decoupling and imaging the 3D S-waves involves some complexity, which has not been addressed in the literature. For this reason, we also attempted at illustrating the physical contents of the two separated S-wave modes and their contribution to seismic full-wave imaging.


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. S111-S127 ◽  
Author(s):  
Qizhen Du ◽  
ChengFeng Guo ◽  
Qiang Zhao ◽  
Xufei Gong ◽  
Chengxiang Wang ◽  
...  

The scalar images (PP, PS, SP, and SS) of elastic reverse time migration (ERTM) can be generated by applying an imaging condition as crosscorrelation of pure wave modes. In conventional ERTM, Helmholtz decomposition is commonly applied in wavefield separation, which leads to a polarity reversal problem in converted-wave images because of the opposite polarity distributions of the S-wavefields. Polarity reversal of the converted-wave image will cause destructive interference when stacking over multiple shots. Besides, in the 3D case, the curl calculation generates a vector S-wave, which makes it impossible to produce scalar PS, SP, and SS images with the crosscorrelation imaging condition. We evaluate a vector-based ERTM (VB-ERTM) method to address these problems. In VB-ERTM, an amplitude-preserved wavefield separation method based on decoupled elastic wave equation is exploited to obtain the pure wave modes. The output separated wavefields are both vectorial. To obtain the scalar images, the scalar imaging condition in which the scalar product of two vector wavefields with source-normalized illumination is exploited to produce scalar images instead of correlating Cartesian components or magnitude of the vector P- and S-wave modes. Compared with alternative methods for correcting the polarity reversal of PS and SP images, our ERTM solution is more stable and simple. Besides these four scalar images, the VB-ERTM method generates another PP-mode image by using the auxiliary stress wavefields. Several 2D and 3D numerical examples are evaluated to demonstrate the potential of our ERTM method.


Geophysics ◽  
2021 ◽  
pp. 1-78
Author(s):  
Zhiyuan Li ◽  
Youshan Liu ◽  
Guanghe Liang ◽  
Guoqiang Xue ◽  
Runjie Wang

The separation of P- and S-wavefields is considered to be an effective approach for eliminating wave-mode cross-talk in elastic reverse-time migration. At present, the Helmholtz decomposition method is widely used for isotropic media. However, it tends to change the amplitudes and phases of the separated wavefields compared with the original wavefields. Other methods used to obtain pure P- and S-wavefields include the application of the elastic wave equations of the decoupled wavefields. To achieve a high computational accuracy, staggered-grid finite-difference (FD) schemes are usually used to numerically solve the equations by introducing an additional stress variable. However, the computational cost of this method is high because a conventional hybrid wavefield (P- and S-wavefields are mixed together) simulation must be created before the P- and S-wavefields can be calculated. We developed the first-order particle velocity equations to reduce the computational cost. The equations can describe four types of particle velocity wavefields: the vector P-wavefield, the scalar P-wavefield, the vector S-wavefield, and the vector S-wavefield rotated in the direction of the curl factor. Without introducing the stress variable, only the four types of particle velocity variables are used to construct the staggered-grid FD schemes, so the computational cost is reduced. We also present an algorithm to calculate the P and S propagation vectors using the four particle velocities, which is simpler than the Poynting vector. Finally, we applied the velocity equations and propagation vectors to elastic reverse-time migration and angle-domain common-image gather computations. These numerical examples illustrate the efficiency of the proposed methods.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S569-S577 ◽  
Author(s):  
Yang Zhao ◽  
Houzhu Zhang ◽  
Jidong Yang ◽  
Tong Fei

Using the two-way elastic-wave equation, elastic reverse time migration (ERTM) is superior to acoustic RTM because ERTM can handle mode conversions and S-wave propagations in complex realistic subsurface. However, ERTM results may not only contain classical backscattering noises, but they may also suffer from false images associated with primary P- and S-wave reflections along their nonphysical paths. These false images are produced by specific wave paths in migration velocity models in the presence of sharp interfaces or strong velocity contrasts. We have addressed these issues explicitly by introducing a primary noise removal strategy into ERTM, in which the up- and downgoing waves are efficiently separated from the pure-mode vector P- and S-wavefields during source- and receiver-side wavefield extrapolation. Specifically, we investigate a new method of vector wavefield decomposition, which allows us to produce the same phases and amplitudes for the separated P- and S-wavefields as those of the input elastic wavefields. A complex function involved with the Hilbert transform is used in up- and downgoing wavefield decomposition. Our approach is cost effective and avoids the large storage of wavefield snapshots that is required by the conventional wavefield separation technique. A modified dot-product imaging condition is proposed to produce multicomponent PP-, PS-, SP-, and SS-images. We apply our imaging condition to two synthetic models, and we demonstrate the improvement on the image quality of ERTM.


Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. S95-S111 ◽  
Author(s):  
Wei Zhang ◽  
Ying Shi

Elastic reverse time migration (RTM) has the ability to retrieve accurately migrated images of complex subsurface structures by imaging the multicomponent seismic data. However, the imaging condition applied in elastic RTM significantly influences the quality of the migrated images. We evaluated three kinds of imaging conditions in elastic RTM. The first kind of imaging condition involves the crosscorrelation between the Cartesian components of the particle-velocity wavefields to yield migrated images of subsurface structures. An alternative crosscorrelation imaging condition between the separated pure wave modes obtained by a Helmholtz-like decomposition method could produce reflectivity images with explicit physical meaning and fewer crosstalk artifacts. A drawback of this approach, though, was that the polarity reversal of the separated S-wave could cause destructive interference in the converted-wave image after stacking over multiple shots. Unlike the conventional decomposition method, the elastic wavefields can also be decomposed in the vector domain using the decoupled elastic wave equation, which preserves the amplitude and phase information of the original elastic wavefields. We have developed an inner-product imaging condition to match the vector-separated P- and S-wave modes to obtain scalar reflectivity images of the subsurface. Moreover, an auxiliary P-wave stress image can supplement the elastic imaging. Using synthetic examples with a layered model, the Marmousi 2 model, and a fault model, we determined that the inner-product imaging condition has prominent advantages over the other two imaging conditions and generates images with preserved amplitude and phase attributes.


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. S359-S376 ◽  
Author(s):  
Chen Tang ◽  
George A. McMechan

Because receiver wavefields reconstructed from observed data are not as stable as synthetic source wavefields, the source-propagation vector and the reflector normal have often been used to calculate angle-domain common-image gathers (ADCIGs) from reverse time migration. However, the existing data flows have three main limitations: (1) Calculating the propagation direction only at the wavefields with maximum amplitudes ignores multiarrivals; using the crosscorrelation imaging condition at each time step can include the multiarrivals but will result in backscattering artifacts. (2) Neither amplitude picking nor Poynting-vector calculations are accurate for overlapping wavefields. (3) Calculating the reflector normal in space is not accurate for a structurally complicated reflection image, and calculating it in the wavenumber ([Formula: see text]) domain may give Fourier truncation artifacts. We address these three limitations in an improved data flow with two steps: During imaging, we use a multidirectional Poynting vector (MPV) to calculate the propagation vectors of the source wavefield at each time step and output intermediate source-angle-domain CIGs (SACIGs). After imaging, we use an antitruncation-artifact Fourier transform (ATFT) to convert SACIGs to ADCIGs in the [Formula: see text]-domain. To achieve the new flow, another three innovative aspects are included. In the first step, we develop an angle-tapering scheme to remove the Fourier truncation artifacts during the wave decomposition (of MPV) while preserving the amplitudes, and we use a wavefield decomposition plus angle-filter imaging condition to remove the backscattering artifacts in the SACIGs. In the second step, we compare two algorithms to remove the Fourier truncation artifacts that are caused by the plane-wave assumption. One uses an antileakage FT (ALFT) in local windows; the other uses an antitruncation-artifact FT, which relaxes the plane-wave assumption and thus can be done for the global space. The second algorithm is preferred. Numerical tests indicate that this new flow (source-side MPV plus ATFT) gives high-quality ADCIGs.


Geophysics ◽  
2020 ◽  
pp. 1-61
Author(s):  
Janaki Vamaraju ◽  
Jeremy Vila ◽  
Mauricio Araya-Polo ◽  
Debanjan Datta ◽  
Mohamed Sidahmed ◽  
...  

Migration techniques are an integral part of seismic imaging workflows. Least-squares reverse time migration (LSRTM) overcomes some of the shortcomings of conventional migration algorithms by compensating for illumination and removing sampling artifacts to increase spatial resolution. However, the computational cost associated with iterative LSRTM is high and convergence can be slow in complex media. We implement pre-stack LSRTM in a deep learning framework and adopt strategies from the data science domain to accelerate convergence. The proposed hybrid framework leverages the existing physics-based models and machine learning optimizers to achieve better and cheaper solutions. Using a time-domain formulation, we show that mini-batch gradients can reduce the computation cost by using a subset of total shots for each iteration. Mini-batch approach does not only reduce source cross-talk but also is less memory intensive. Combining mini-batch gradients with deep learning optimizers and loss functions can improve the efficiency of LSRTM. Deep learning optimizers such as the adaptive moment estimation are generally well suited for noisy and sparse data. We compare different optimizers and demonstrate their efficacy in mitigating migration artifacts. To accelerate the inversion, we adopt the regularised Huber loss function in conjunction. We apply these techniques to 2D Marmousi and 3D SEG/EAGE salt models and show improvements over conventional LSRTM baselines. The proposed approach achieves higher spatial resolution in less computation time measured by various qualitative and quantitative evaluation metrics.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. R149-R159 ◽  
Author(s):  
Xinfa Zhu ◽  
George A. McMechan

Near- and postcritical (wide-angle) reflections provide the potential for velocity and density inversion because of their large amplitudes and phase-shifted waveforms. We tested using phase variation with angle (PVA) data in addition to, or instead of, amplitude variation with angle (AVA) data for elastic inversion. Accurate PVA test data were generated using the reflectivity method. Two other forward modeling methods were also investigated, including plane-wave and spherical-wave reflection coefficients. For a two half-space model, linearized least squares was used to invert PVA and AVA data for the P-wave velocity, S-wave velocity, and the density of the lower space and the S-wave velocity of the upper space. Inversion tests showed the feasibility and robustness of PVA inversion. A reverse-time migration test demonstrated better preservation of PVA information than AVA information during wavefield propagation through a layered overburden. Phases of deeper reflections were less affected than amplitudes by the transmission losses, which makes the results of PVA inversion more accurate than AVA inversion in multilayered media. PVA brings useful information to the elastic inversion of wide-angle reflections.


Sign in / Sign up

Export Citation Format

Share Document