Transdimensional simultaneous inversion of velocity structure and event locations in downhole microseismic monitoring

Geophysics ◽  
2021 ◽  
pp. 1-92
Author(s):  
Xingda Jiang ◽  
Wei Zhang ◽  
Hui Yang ◽  
Chaofeng Zhao ◽  
Zixuan Wang

In downhole microseismic monitoring, the velocity model plays a vital role in accurate mapping of the hydraulic fracturing image. For velocity model uncertainties in the number of layers or interface depths, the conventional velocity calibration method has been shown to effectively locate the perforation shots; however, it introduces non-negligible location errors for microseismic events, especially for complex geological formations with inclinations. To improve the event location accuracy, we exploit the advantages of the reversible jump Markov chain Monte Carlo (rjMCMC) approach in generating different dimensions of velocity models and propose a transdimensional Bayesian simultaneous inversion framework for obtaining the effective velocity structure and event locations simultaneously. The transdimensional inversion changes the number of layers during the inversion process and selects the optimal interface depths and velocity values to improve the event location accuracy. The confidence intervals of the simultaneous inversion event locations estimated by Bayesian inference enable us to evaluate the location uncertainties in the horizontal and vertical directions. Two synthetic examples and a field test are presented to illustrate the performance of our methodology, and the event location accuracy is shown to be higher than that obtained using the conventional methods. With less dependence on prior information, the proposed transdimensional simultaneous inversion method can be used to obtain an effective velocity structure for facilitating highly accurate hydraulic fracturing mapping.

2018 ◽  
Vol 6 (3) ◽  
pp. SH39-SH48 ◽  
Author(s):  
Wojciech Gajek ◽  
Jacek Trojanowski ◽  
Michał Malinowski ◽  
Marek Jarosiński ◽  
Marko Riedel

A precise velocity model is necessary to obtain reliable locations of microseismic events, which provide information about the effectiveness of the hydraulic stimulation. Seismic anisotropy plays an important role in microseismic event location by imposing the dependency between wave velocities and its propagation direction. Building an anisotropic velocity model that accounts for that effect allows for more accurate location of microseismic events. We have used downhole microseismic records from a pilot hydraulic fracturing experiment in Lower-Paleozoic shale gas play in the Baltic Basin, Northern Poland, to obtain accurate microseismic events locations. We have developed a workflow for a vertical transverse isotropy velocity model construction when facing a challenging absence of horizontally polarized S-waves in perforation shot data, which carry information about Thomsen’s [Formula: see text] parameter and provide valuable constraints for locating microseismic events. We extract effective [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] for each layer from the P- and SV-wave arrivals of perforation shots, whereas the unresolved [Formula: see text] is retrieved afterward from the SH-SV-wave delay time of selected microseismic events. An inverted velocity model provides more reliable location of microseismic events, which then becomes an essential input for evaluating the hydraulic stimulation job effectiveness in the geomechanical context. We evaluate the influence of the preexisting fracture sets and obliquity between the borehole trajectory and principal horizontal stress direction on the hydraulic treatment performance. The fracturing fluid migrates to previously fractured zones, while the growth of the microseismic volume in consecutive stages is caused by increased penetration of the above-lying lithologic formations.


2021 ◽  
Author(s):  
Gregor Rajh ◽  
Josip Stipčević ◽  
Mladen Živčić ◽  
Marijan Herak ◽  
Andrej Gosar

<p>The investigated area of the NW Dinarides is bordered by the Adriatic foreland, the Southern Alps, and the Pannonian basin at the NE corner of the Adriatic Sea. Its complex crustal structure is the result of interactions among different tectonic units. Despite numerous seismic studies taking place in this region, there still exists a need for a detailed, smaller scale study focusing mainly on the brittle part of the Earth's crust. Therefore, we decided to investigate the velocity structure of the crust using concepts of local earthquake tomography (LET) and minimum 1-D velocity model. Here, we present the results of the 1-D velocity modeling and the catalogue of the relocated seismicity. A minimum 1-D velocity model is computed by simultaneous inversion for hypocentral and velocity parameters together with seismic station corrections and represents the best fit to the observed arrival times.</p><p>We used 15,579 routinely picked P wave arrival times from 631 well-located earthquakes that occurred in Slovenia and in its immediate surroundings (mainly NW Croatia). Various initial 1-D velocity models, differing in velocity and layering, were used as input for velocity inversion in the VELEST program. We also varied several inversion parameters during the inversion runs. Most of the computed 1-D velocity models converged to a stable solution in the depth range between 0 and 25 km. We evaluated the inversion results using rigorous testing procedures and selected two best performing velocity models. Each of these models will be used independently as the initial model in the simultaneous hypocenter-velocity inversion for a 3-D velocity structure in LET. Based on the results of the 1-D velocity modeling, seismicity distribution, and tectonics, we divided the study area into three parts, redefined the earthquake-station geometry, and performed the inversion for each part separately. This way, we gained a better insight into the shallow velocity structure of each subregion and were able to demonstrate the differences among them.</p><p>Besides general structural implications and a potential to improve the results of LET, the new 1-D velocity models along with station corrections can also be used in fast routine earthquake location and to detect systematic travel time errors in seismological bulletins, as already shown by some studies using similar methods.</p>


Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. KS13-KS25 ◽  
Author(s):  
M. Javad Khoshnavaz ◽  
Kit Chambers ◽  
Andrej Bóna ◽  
Milovan Urosevic

A common acquisition scenario in microseismic monitoring is the deployment of large areal receiver arrays at or near the surface. This recording geometry has the advantage of providing coverage of the source’s focal hemisphere as well as characterization of the arrival time moveout curve; however, the accuracy of many location techniques applied to these data sets depends on the accuracy of the depth velocity model provided prior to location. We have developed a simple oriented time-domain location technique so that full knowledge of the velocity model is not required a priori. The applicability of the technique is limited to horizontally layered models and also to models with dipping interfaces of small angles; however, this restriction is acceptable in many unconventional reservoirs. Implementation of the technique includes three steps: (1) smoothing of the observed time arrivals by fitting a hyperbolic moveout curve with a broad set of constraints, (2) updating and restricting the constraints using a local-slopes-based location workflow, and (3) estimation of the focal coordinates of passive sources using the updated constraints for the final least-squares fitting of the moveout curves. We have tested the performance of the proposed technique on several 2D examples and a 3D field data set. The results from synthetic examples suggest that, despite the assumption of the method that the arrival moveout can be modeled using a constant effective velocity, a reliable event location is achieved for layered models without considerable lateral heterogeneities. Our tests on the field data set find that the focal point coincides with a previously derived estimate of the source location. To assess the uncertainty of the proposed technique, bootstrap statistics was also used and applied to the field data set.


Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. KS27-KS39 ◽  
Author(s):  
Zhishuai Zhang ◽  
James W. Rector ◽  
Michael J. Nava

We have applied Bayesian inference for simultaneous inversion of multiple microseismic data to obtain event locations along with the subsurface velocity model. The traditional method of using a predetermined velocity model for event location may be subject to large uncertainties, particularly if the prior velocity model is poor. Our study indicated that microseismic data can help to construct the velocity model, which is usually a major source of uncertainty in microseismic event locations. The simultaneous inversion eliminates the requirement for an accurate predetermined velocity model in microseismic event location estimation. We estimate the posterior probability density of the velocity model and microseismic event locations with the maximum a posteriori estimation, and the posterior covariance approximation under the Gaussian assumption. This provides an efficient and effective way to quantify the uncertainty of the microseismic location estimation and capture the correlation between the velocity model and microseismic event locations. We have developed successful applications on both synthetic examples and real data from the Newberry enhanced geothermal system. Comparisons with location results based on a traditional predetermined velocity model method demonstrated that we can construct a reliable effective velocity model using only microseismic data and determine microseismic event locations without prior knowledge of the velocity model.


Geophysics ◽  
2011 ◽  
Vol 76 (6) ◽  
pp. WC17-WC25 ◽  
Author(s):  
Ulrich Zimmer

Microseismic monitoring has become an important part of borehole completions in tight-reservoir formations. Usually, clear objectives for a microseismic survey are set prior to the data acquisition. The possibility of meeting these objectives is determined by the acquisition geometry, the target formation, the completion schedule, and only to a lesser extent, by the data quality itself. Provided is a tutorial on the content and use of prejob modeling and design studies as a tool to anticipate viewing distances, data quantity, location accuracy, event magnitudes, achievable mapping distances, expected waveforms, and noise levels. In addition, potential challenges in meeting the survey objectives can be identified and solutions to these challenges can be devised prior to the survey. For downhole surveys, this involves the evaluation of different sensor array geometries and their impact on the location accuracy in different parts of the expected model. The sensitivity of the event location on the velocity model can be estimated using an initial log-based model. Recently, the detailed characterization of the event mechanism in form of a moment tensor inversion has received increased attention. The accuracy of the inverted moment tensor depends largely on the coverage of the focal sphere, i.e., the distribution of the sensors around the event location. Based on the sensor positions, areas with high- and low-quality moment tensor inversion results can be identified prior to data acquisition through the distribution of the condition number. Depending on the survey objectives and the given constraints, the microseismic design study might show that the survey objectives cannot be met. In this case, it is possible to evaluate alternate technologies, e.g., distributed temperature sensing (DTS), ahead of the project for their potential to meet these challenges.


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCB47-WCB55 ◽  
Author(s):  
Donghong Pei ◽  
John A. Quirein ◽  
Bruce E. Cornish ◽  
Dan Quinn ◽  
Norman R. Warpinski

To accurately locate microearthquakes that are genetically related to hydraulic fracture stimulation, a thorough knowledge of the velocity structure between monitoring and fracturing treatment wells is essential. Very fast simulated annealing (VFSA) is implemented to invert for a flat-layered velocity model between wells using perforation or string-shot data. A two-point ray-tracing method is used to find the ray parameter [Formula: see text] for a ray traveling from a source to a receiver. The original traveltime-calculation formula is modified to account for the borehole source-receiver geometry. VFSA is used as a tool to optimize P- and S-wave velocities simultaneously. Unlike previous applications of VFSA, two improvements result from a new study: (1) both P- and S-wave arrival-time misfits are considered in a joint-objective function, and (2) P- and S-wave velocities are perturbed simultaneously during annealing. The inverted velocities follow the true values closely with a very small root-mean-square error, indicating the inverted model is close to the global minimum solution whose rms error should be zero for synthetic examples. Data noise contaminates inverted models, but not substantially in synthetic test results. A comparison of models inverted using VFSA and Occam’s inversion technique indicates that inverted models using VFSA are superior to those using Occam’s method in terms of velocity accuracy.


Sign in / Sign up

Export Citation Format

Share Document