Stuck between a rock and a reflection: A tutorial on low-frequency models for seismic inversion

2017 ◽  
Vol 5 (2) ◽  
pp. B17-B27 ◽  
Author(s):  
Mark Sams ◽  
David Carter

Predicting the low-frequency component to be used for seismic inversion to absolute elastic rock properties is often problematic. The most common technique is to interpolate well data within a structural framework. This workflow is very often not appropriate because it is too dependent on the number and distribution of wells and the interpolation algorithm chosen. The inclusion of seismic velocity information can reduce prediction error, but it more often introduces additional uncertainties because seismic velocities are often unreliable and require conditioning, calibration to wells, and conversion to S-velocity and density. Alternative techniques exist that rely on the information from within the seismic bandwidth to predict the variations below the seismic bandwidth; for example, using an interpretation of relative properties to update the low-frequency model. Such methods can provide improved predictions, especially when constrained by a conceptual geologic model and known rock-physics relationships, but they clearly have limitations. On the other hand, interpretation of relative elastic properties can be equally challenging and therefore interpreters may find themselves stuck — unsure how to interpret relative properties and seemingly unable to construct a useful low-frequency model. There is no immediate solution to this dilemma; however, it is clear that low-frequency models should not be a fixed input to seismic inversion, but low-frequency model building should be considered as a means to interpret relative elastic properties from inversion.

2017 ◽  
Vol 25 (03) ◽  
pp. 1750022
Author(s):  
Xiuwei Yang ◽  
Peimin Zhu

Acoustic impedance (AI) from seismic inversion can indicate rock properties and can be used, when combined with rock physics, to predict reservoir parameters, such as porosity. Solutions to seismic inversion problem are almost nonunique due to the limited bandwidth of seismic data. Additional constraints from well log data and geology are needed to arrive at a reasonable solution. In this paper, sedimentary facies is used to reduce the uncertainty in inversion and rock physics modeling; the results not only agree with seismic data, but also conform to geology. A reservoir prediction method, which incorporates seismic data, well logs, rock physics and sedimentary facies, is proposed. AI was first derived by constrained sparse spike inversion (CSSI) using a sedimentary facies dependent low-frequency model, and then was transformed to reservoir parameters by sequential simulation, statistical rock physics and [Formula: see text]-model. Two numerical experiments using synthetic model and real data indicated that the sedimentary facies information may help to obtain a more reasonable prediction.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB53-WB65 ◽  
Author(s):  
Huyen Bui ◽  
Jennifer Graham ◽  
Shantanu Kumar Singh ◽  
Fred Snyder ◽  
Martiris Smith

One of the main goals of seismic inversion is to obtain high-resolution relative and absolute impedance for reservoir properties prediction. We aim to study whether the results from seismic inversion of subsalt data are sufficiently robust for reliable reservoir characterization. Approximately [Formula: see text] of poststack, wide-azimuth, anisotropic (vertical transverse isotropic) wave-equation migration seismic data from 50 Outer Continental Shelf blocks in the Green Canyon area of the Gulf of Mexico were inverted in this study. A total of four subsalt wells and four subsalt seismic interpreted horizons were used in the inversion process, and one of the wells was used for a blind test. Our poststack inversion method used an iterative discrete spike inversion method, based on the combination of space-adaptive wavelet processing to invert for relative acoustic impedance. Next, the dips were estimated from seismic data and converted to a horizon-like layer sequence field that was used as one of the inputs into the low-frequency model. The background model was generated by incorporating the well velocities, seismic velocity, seismic interpreted horizons, and the previously derived layer sequence field in the low-frequency model. Then, the relative acoustic impedance volume was scaled by adding the low-frequency model to match the calculated acoustic impedance logs from the wells for absolute acoustic impedance. Finally, the geological information and rock physics data were incorporated into the reservoir properties assessment for sand/shale prediction in two main target reservoirs in the Miocene and Wilcox formations. Overall, the poststack inversion results and the sand/shale prediction showed good ties at the well locations. This was clearly demonstrated in the blind test well. Hence, incorporating rock physics and geology enables poststack inversion in subsalt areas.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


2021 ◽  
Author(s):  
Siddharth Garia ◽  
Arnab Kumar Pal ◽  
Karangat Ravi ◽  
Archana M Nair

<p>Seismic inversion method is widely used to characterize reservoirs and detect zones of interest, i.e., hydrocarbon-bearing zone in the subsurface by transforming seismic reflection data into quantitative subsurface rock properties. The primary aim of seismic inversion is to transform the 3D seismic section/cube into an acoustic impedance (AI) cube. The integration of this elastic attribute, i.e., AI cube with well log data, can thereafter help to establish correlations between AI and different petrophysical properties. The seismic inversion algorithm interpolates and spatially populates data/parameters of wells to the entire seismic section/cube based on the well log information. The case study presented here uses machine learning-neural network based algorithm to extract the different petrophysical properties such as porosity and bulk density from the seismic data of the Upper Assam basin, India. We analyzed three different stratigraphic  units that are established to be producing zones in this basin.</p><p> AI model is generated from the seismic reflection data with the help of colored inversion operator. Subsequently, low-frequency model is generated from the impedance data extracted from the well log information. To compensate for the band limited nature of the seismic data, this low-frequency model is added to the existing acoustic model. Thereafter, a feed-forward neural network (NN) is trained with AI as input and porosity/bulk density as target, validated with NN generated porosity/bulk density with actual porosity/bulk density from well log data. The trained network is thus tested over the entire region of interest to populate these petrophysical properties.</p><p>Three seismic zones were identified from the seismic section ranging from 681 to 1333 ms, 1528 to 1575 ms and 1771 to 1814 ms. The range of AI, porosity and bulk density were observed to be 1738 to 6000 (g/cc) * (m/s), 26 to 38% and 1.95 to 2.46 g/cc respectively. Studies conducted by researchers in the same basin yielded porosity results in the range of 10-36%. The changes in acoustic impedance, porosity and bulk density may be attributed to the changes in lithology. NN method was prioritized over other traditional statistical methods due to its ability to model any arbitrary dependency (non-linear relationships between input and target values) and also overfitting can be avoided. Hence, the workflow presented here provides an estimation of reservoir properties and is considered useful in predicting petrophysical properties for reservoir characterization, thus helping to estimate reservoir productivity.</p>


2021 ◽  
Vol 40 (10) ◽  
pp. 751-758
Author(s):  
Fabien Allo ◽  
Jean-Philippe Coulon ◽  
Jean-Luc Formento ◽  
Romain Reboul ◽  
Laure Capar ◽  
...  

Deep neural networks (DNNs) have the potential to streamline the integration of seismic data for reservoir characterization by providing estimates of rock properties that are directly interpretable by geologists and reservoir engineers instead of elastic attributes like most standard seismic inversion methods. However, they have yet to be applied widely in the energy industry because training DNNs requires a large amount of labeled data that is rarely available. Training set augmentation, routinely used in other scientific fields such as image recognition, can address this issue and open the door to DNNs for geophysical applications. Although this approach has been explored in the past, creating realistic synthetic well and seismic data representative of the variable geology of a reservoir remains challenging. Recently introduced theory-guided techniques can help achieve this goal. A key step in these hybrid techniques is the use of theoretical rock-physics models to derive elastic pseudologs from variations of existing petrophysical logs. Rock-physics theories are already commonly relied on to generalize and extrapolate the relationship between rock and elastic properties. Therefore, they are a useful tool to generate a large catalog of alternative pseudologs representing realistic geologic variations away from the existing well locations. While not directly driven by rock physics, neural networks trained on such synthetic catalogs extract the intrinsic rock-physics relationships and are therefore capable of directly estimating rock properties from seismic amplitudes. Neural networks trained on purely synthetic data are applied to a set of 2D poststack seismic lines to characterize a geothermal reservoir located in the Dogger Formation northeast of Paris, France. The goal of the study is to determine the extent of porous and permeable layers encountered at existing geothermal wells and ultimately guide the location and design of future geothermal wells in the area.


2019 ◽  
Vol 38 (5) ◽  
pp. 332-332
Author(s):  
Yongyi Li ◽  
Lev Vernik ◽  
Mark Chapman ◽  
Joel Sarout

Rock physics links the physical properties of rocks to geophysical and petrophysical observations and, in the process, serves as a focal point in many exploration and reservoir characterization studies. Today, the field of rock physics and seismic petrophysics embraces new directions with diverse applications in estimating static and dynamic reservoir properties through time-variant mechanical, thermal, chemical, and geologic processes. Integration with new digital and computing technologies is gradually gaining traction. The use of rock physics in seismic imaging, prestack seismic analysis, seismic inversion, and geomechanical model building also contributes to the increase in rock-physics influence. This special section highlights current rock-physics research and practices in several key areas, namely experimental rock physics, rock-physics theory and model studies, and the use of rock physics in reservoir characterizations.


2020 ◽  
Author(s):  
Ding Jicai ◽  
Zhao Xiaolong ◽  
Jiang Xiudi ◽  
Wang Yandong ◽  
Huang Xiaogang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document