Incorporation of geology with rock physics enables subsalt poststack inversion: A case study in the Gulf of Mexico

Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB53-WB65 ◽  
Author(s):  
Huyen Bui ◽  
Jennifer Graham ◽  
Shantanu Kumar Singh ◽  
Fred Snyder ◽  
Martiris Smith

One of the main goals of seismic inversion is to obtain high-resolution relative and absolute impedance for reservoir properties prediction. We aim to study whether the results from seismic inversion of subsalt data are sufficiently robust for reliable reservoir characterization. Approximately [Formula: see text] of poststack, wide-azimuth, anisotropic (vertical transverse isotropic) wave-equation migration seismic data from 50 Outer Continental Shelf blocks in the Green Canyon area of the Gulf of Mexico were inverted in this study. A total of four subsalt wells and four subsalt seismic interpreted horizons were used in the inversion process, and one of the wells was used for a blind test. Our poststack inversion method used an iterative discrete spike inversion method, based on the combination of space-adaptive wavelet processing to invert for relative acoustic impedance. Next, the dips were estimated from seismic data and converted to a horizon-like layer sequence field that was used as one of the inputs into the low-frequency model. The background model was generated by incorporating the well velocities, seismic velocity, seismic interpreted horizons, and the previously derived layer sequence field in the low-frequency model. Then, the relative acoustic impedance volume was scaled by adding the low-frequency model to match the calculated acoustic impedance logs from the wells for absolute acoustic impedance. Finally, the geological information and rock physics data were incorporated into the reservoir properties assessment for sand/shale prediction in two main target reservoirs in the Miocene and Wilcox formations. Overall, the poststack inversion results and the sand/shale prediction showed good ties at the well locations. This was clearly demonstrated in the blind test well. Hence, incorporating rock physics and geology enables poststack inversion in subsalt areas.

2017 ◽  
Vol 25 (03) ◽  
pp. 1750022
Author(s):  
Xiuwei Yang ◽  
Peimin Zhu

Acoustic impedance (AI) from seismic inversion can indicate rock properties and can be used, when combined with rock physics, to predict reservoir parameters, such as porosity. Solutions to seismic inversion problem are almost nonunique due to the limited bandwidth of seismic data. Additional constraints from well log data and geology are needed to arrive at a reasonable solution. In this paper, sedimentary facies is used to reduce the uncertainty in inversion and rock physics modeling; the results not only agree with seismic data, but also conform to geology. A reservoir prediction method, which incorporates seismic data, well logs, rock physics and sedimentary facies, is proposed. AI was first derived by constrained sparse spike inversion (CSSI) using a sedimentary facies dependent low-frequency model, and then was transformed to reservoir parameters by sequential simulation, statistical rock physics and [Formula: see text]-model. Two numerical experiments using synthetic model and real data indicated that the sedimentary facies information may help to obtain a more reasonable prediction.


2017 ◽  
Vol 5 (4) ◽  
pp. T523-T530
Author(s):  
Ehsan Zabihi Naeini ◽  
Mark Sams

Broadband reprocessed seismic data from the North West Shelf of Australia were inverted using wavelets estimated with a conventional approach. The inversion method applied was a facies-based inversion, in which the low-frequency model is a product of the inversion process itself, constrained by facies-dependent input trends, the resultant facies distribution, and the match to the seismic. The results identified the presence of a gas reservoir that had recently been confirmed through drilling. The reservoir is thin, with up to 15 ms of maximum thickness. The bandwidth of the seismic data is approximately 5–70 Hz, and the well data used to extract the wavelet used in the inversion are only 400 ms long. As such, there was little control on the lowest frequencies of the wavelet. Different wavelets were subsequently estimated using a variety of new techniques that attempt to address the limitations of short well-log segments and low-frequency seismic. The revised inversion showed greater gas-sand continuity and an extension of the reservoir at one flank. Noise-free synthetic examples indicate that thin-bed delineation can depend on the accuracy of the low-frequency content of the wavelets used for inversion. Underestimation of the low-frequency contents can result in missing thin beds, whereas underestimation of high frequencies can introduce false thin beds. Therefore, it is very important to correctly capture the full frequency content of the seismic data in terms of the amplitude and phase spectra of the estimated wavelets, which subsequently leads to a more accurate thin-bed reservoir characterization through inversion.


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. O21-O37 ◽  
Author(s):  
Dario Grana ◽  
Ernesto Della Rossa

A joint estimation of petrophysical properties is proposed that combines statistical rock physics and Bayesian seismic inversion. Because elastic attributes are correlated with petrophysical variables (effective porosity, clay content, and water saturation) and this physical link is associated with uncertainties, the petrophysical-properties estimation from seismic data can be seen as a Bayesian inversion problem. The purpose of this work was to develop a strategy for estimating the probability distributions of petrophysical parameters and litho-fluid classes from seismics. Estimation of reservoir properties and the associated uncertainty was performed in three steps: linearized seismic inversion to estimate the probabilities of elastic parameters, probabilistic upscaling to include the scale-changes effect, and petrophysical inversion to estimate the probabilities of petrophysical variables andlitho-fluid classes. Rock-physics equations provide the linkbetween reservoir properties and velocities, and linearized seismic modeling connects velocities and density to seismic amplitude. A full Bayesian approach was adopted to propagate uncertainty from seismics to petrophysics in an integrated framework that takes into account different sources of uncertainty: heterogeneity of the real data, approximation of physical models, measurement errors, and scale changes. The method has been tested, as a feasibility step, on real well data and synthetic seismic data to show reliable propagation of the uncertainty through the three different steps and to compare two statistical approaches: parametric and nonparametric. Application to a real reservoir study (including data from two wells and partially stacked seismic volumes) has provided as a main result the probability densities of petrophysical properties and litho-fluid classes. It demonstrated the applicability of the proposed inversion method.


2020 ◽  
Vol 13 (36) ◽  
pp. 3738-3753 ◽  
Author(s):  
Aniefiok Sylvester Akpan ◽  

Aim/objectives: The aim of this research is, to use Time lapse (4D) seismic and investigate the influence of low frequency update in deterministic model-based seismic inversion employed in delineating a prospect saturated with bypassed hydrocarbon accumulation. Method: The dataset employed in this study incorporates 4D seismic volumes with fifteen (15) years production, interval between 2001 baseline and 2016 monitor seismic vintages. The inversion was carried out using full bandwidth of the updated low frequency and bandpass filtered low frequency approaches. The seismic vintages (baseline and monitor) were simultaneously inverted into acoustic impedance volumes for the two approaches. The formation fluid and lithology were discriminated through fluid replacement modelling (FRM) based on the colour separation between brine and gas saturation scenarios. Findings: The two inversion methods employed reveal six (6) zones suspected to be saturated with bypassed hydrocarbons. The delineated bypassed zones are masked in the full bandwidth approach,depicting the effect of the updated low frequency model. Meanwhile, the bandpass filtered approach result presents a better delineated bypassed reservoir as the zones are more pronounced when compared with the full bandwidth approach. Porosity estimate reveals that the bandpass filtered approach is characterized with excellent porosity in the suspected bypassed zones. The results equally gave more reliable and full delineated bypassed zones. Originality and novelty: The dataset employed in this study were obtained from a producing hydrocarbon field which, interest is to maximize the production of oil/gas. The study will bridge the inherent gab observed in using model-based seismic inversion approach to analyse and interpret seismic data in order to delineate hydrocarbon prospects. The research reveals that,the model-based seismic inversion method is still very effective in delineating hydrocarbon prospect when the updated low frequency is bandpass filtered to remove the model effect which influences the inverted acoustic impedance results. Keywords: Porosity; frequency; bypassed; reservoir and impedance


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. R59-R67 ◽  
Author(s):  
Igor B. Morozov ◽  
Jinfeng Ma

The seismic-impedance inversion problem is underconstrained inherently and does not allow the use of rigorous joint inversion. In the absence of a true inverse, a reliable solution free from subjective parameters can be obtained by defining a set of physical constraints that should be satisfied by the resulting images. A method for constructing synthetic logs is proposed that explicitly and accurately satisfies (1) the convolutional equation, (2) time-depth constraints of the seismic data, (3) a background low-frequency model from logs or seismic/geologic interpretation, and (4) spectral amplitudes and geostatistical information from spatially interpolated well logs. The resulting synthetic log sections or volumes are interpretable in standard ways. Unlike broadly used joint-inversion algorithms, the method contains no subjectively selected user parameters, utilizes the log data more completely, and assesses intermediate results. The procedure is simple and tolerant to noise, and it leads to higher-resolution images. Separating the seismic and subseismic frequency bands also simplifies data processing for acoustic-impedance (AI) inversion. For example, zero-phase deconvolution and true-amplitude processing of seismic data are not required and are included automatically in this method. The approach is applicable to 2D and 3D data sets and to multiple pre- and poststack seismic attributes. It has been tested on inversions for AI and true-amplitude reflectivity using 2D synthetic and real-data examples.


1999 ◽  
Vol 2 (04) ◽  
pp. 334-340 ◽  
Author(s):  
Philippe Lamy ◽  
P.A. Swaby ◽  
P.S. Rowbotham ◽  
Olivier Dubrule ◽  
A. Haas

Summary The methodology presented in this paper incorporates seismic data, geological knowledge and well logs to produce models of reservoir parameters and uncertainties associated with them. A three-dimensional (3D) seismic dataset is inverted within a geological and stratigraphic model using the geostatistical inversion technique. Several reservoir-scale acoustic impedance blocks are obtained and quantification of uncertainty is determined by computing statistics on these 3D blocks. Combining these statistics with the kriging of the reservoir parameter well logs allows the transformation of impedances into reservoir parameters. This combination is similar to performing a collocated cokriging of the acoustic impedances. Introduction Our geostatistical inversion approach is used to invert seismic traces within a geological and stratigraphic model. At each seismic trace location, a large number of acoustic impedance (AI) traces are generated by conditional simulation, and a local objective function is minimized to find the trace that best fits the actual seismic trace. Several three-dimensional (3D) AI realizations are obtained, all of which are constrained by both the well logs and seismic data. Statistics are then computed in each stratigraphic cell of the 3D results to quantify the nonuniqueness of the solution and to summarize the information provided by individual realizations. Finally, AI are transformed into other reservoir parameters such as Vshale through a statistical petrophysical relationship. This transformation is used to map Vshale between wells, by combining information derived from Vshale logs with information derived from AI blocks. The final block(s) can then be mapped from the time to the depth domain and used for building the flow simulation models or for defining reservoir characterization maps (e.g., net to gross, hydrocarbon pore volume). We illustrate the geostatistical inversion method with results from an actual case study. The construction of the a-priori model in time, the inversion, and the final reservoir parameters in depth are described. These results show the benefit of a multidisciplinary approach, and illustrate how the geostatistical inversion method provides clear quantification of uncertainties affecting the modeling of reservoir properties between wells. Methodology The Geostatistical Inversion Approach. This methodology was introduced by Bortoli et al.1 and Haas and Dubrule.2 It is also discussed in Dubrule et al.3 and Rowbotham et al.4 Its application on a synthetic case is described in Dubrule et al.5 A brief review of the method will be presented here, emphasizing how seismic data and well logs are incorporated into the inversion process. The first step is to build a geological model of the reservoir in seismic time. Surfaces are derived from sets of picks defining the interpreted seismic. These surfaces are important sincethey delineate the main layers of the reservoir and, as we will see below, the statistical model associated with these layers, andthey control the 3D stratigraphic grid construction. The structure of this grid (onlap, eroded, or proportional) depends on the geological context. The maximum vertical discretization may be higher than that of the seismic, typically from 1 to 4 milliseconds. The horizontal discretization is equal to the number of seismic traces to invert in each direction (one trace per cell in map view). Raw AI logs at the wells have to be located within this stratigraphic grid since they will be used as conditioning data during the inversion process. It is essential that well logs should be properly calibrated with the seismic. This implies that a representative seismic wavelet has been matched to the wells, by comparing the convolved reflectivity well log response with the seismic response at the same location. This issue is described more fully in Rowbotham et al.4 Geostatistical parameters are determined by using both the wells and seismic data. Lateral variograms are computed from the seismic mapped into the stratigraphic grid. Well logs are used to both give an a priori model (AI mean and standard deviation) per stratum and to compute vertical variograms. The geostatistical inversion process can then be started. A random path is followed by the simulation procedure, and at each randomly drawn trace location AI trace values can be generated by sequential Gaussian simulation (SGS). A large number of AI traces are generated at the same location and the corresponding reflectivities are calculated. After convolution with the wavelet, the AI trace that leads to the best fit with the actual seismic is kept and merged with the wells and the previously simulated AI traces. The 3D block is therefore filled sequentially, trace after trace (see Fig. 1). It is possible to ignore the seismic data in the simulation process by generating only one trace at any (X, Y) location and automatically keeping it as "the best one." In this case, realizations are only constrained by the wells and the geostatistical model (a-priori parameters and variograms).


2021 ◽  
Vol 2 (12) ◽  
pp. 1229-1230
Author(s):  
Yasir Bashir ◽  
Nordiana Mohd Muztaza ◽  
Nur Azwin Ismail ◽  
Ismail Ahmad Abir ◽  
Andy Anderson Bery ◽  
...  

Seismic data acquired in the field show the subsurface reflectors or horizon among the geological strata, while the seismic inversion converts this reflector information into the acoustic impedance section which shows the layer properties based on lithology. The research aims to predict the porosity to identify the reservoir which is in between the tight layer. So, the output of the seismic inversion is much more batter than the seismic as it is closer to reality such as geology. Seismic inversion is frequently used to determine rock physics properties, for example, acoustic impedance and porosity.


2013 ◽  
Vol 1 (2) ◽  
pp. T167-T176 ◽  
Author(s):  
Brian P. Wallick ◽  
Luis Giroldi

Interpretation of conventional land seismic data over a Permian-age gas field in Eastern Saudi Arabia has proven difficult over time due to low signal-to-noise ratio and limited bandwidth in the seismic volume. In an effort to improve the signal and broaden the bandwidth, newly acquired seismic data over this field have employed point receiver technology, dense wavefield sampling, a full azimuth geometry, and a specially designed sweep with useful frequencies as low as three hertz. The resulting data display enhanced reflection continuity and improved resolution. With the extension of low frequencies and improved interpretability, acoustic impedance inversion results are more robust and allow greater flexibility in reservoir characterization and prediction. In addition, because inversion to acoustic impedance is no longer completely tied to a wells-only low-frequency model, there are positive implications for exploration.


Geophysics ◽  
2001 ◽  
Vol 66 (4) ◽  
pp. 988-1001 ◽  
Author(s):  
T. Mukerji ◽  
A. Jørstad ◽  
P. Avseth ◽  
G. Mavko ◽  
J. R. Granli

Reliably predicting lithologic and saturation heterogeneities is one of the key problems in reservoir characterization. In this study, we show how statistical rock physics techniques combined with seismic information can be used to classify reservoir lithologies and pore fluids. One of the innovations was to use a seismic impedance attribute (related to the [Formula: see text] ratio) that incorporates far‐offset data, but at the same time can be practically obtained using normal incidence inversion algorithms. The methods were applied to a North Sea turbidite system. We incorporated well log measurements with calibration from core data to estimate the near‐offset and far‐offset reflectivity and impedance attributes. Multivariate probability distributions were estimated from the data to identify the attribute clusters and their separability for different facies and fluid saturations. A training data was set up using Monte Carlo simulations based on the well log—derived probability distributions. Fluid substitution by Gassmann’s equation was used to extend the training data, thus accounting for pore fluid conditions not encountered in the well. Seismic inversion of near‐offset and far‐offset stacks gave us two 3‐D cubes of impedance attributes in the interwell region. The near‐offset stack approximates a zero‐offset section, giving an estimate of the normal incidence acoustic impedance. The far offset stack gives an estimate of a [Formula: see text]‐related elastic impedance attribute that is equivalent to the acoustic impedance for non‐normal incidence. These impedance attributes obtained from seismic inversion were then used with the training probability distribution functions to predict the probability of occurrence of the different lithofacies in the interwell region. Statistical classification techniques, as well as geostatistical indicator simulations were applied on the 3‐D seismic data cube. A Markov‐Bayes technique was used to update the probabilities obtained from the seismic data by taking into account the spatial correlation as estimated from the facies indicator variograms. The final results are spatial 3‐D maps of not only the most likely facies and pore fluids, but also their occurrence probabilities. A key ingredient in this study was the exploitation of physically based seismic‐to‐reservoir property transforms optimally combined with statistical techniques.


2017 ◽  
Vol 5 (3) ◽  
pp. SL1-SL8 ◽  
Author(s):  
Ehsan Zabihi Naeini ◽  
Russell Exley

Quantitative interpretation (QI) is an important part of successful exploration, appraisal, and development activities. Seismic amplitude variation with offset (AVO) provides the primary signal for the vast majority of QI studies allowing the determination of elastic properties from which facies can be determined. Unfortunately, many established AVO-based seismic inversion algorithms are hindered by not fully accounting for inherent subsurface facies variations and also by requiring the addition of a preconceived low-frequency model to supplement the limited bandwidth of the input seismic. We apply a novel joint impedance and facies inversion applied to a North Sea prospect using broadband seismic data. The focus was to demonstrate the significant advantages of inverting for each facies individually and iteratively determine an optimized low-frequency model from facies-derived depth trends. The results generated several scenarios for potential facies distributions thereby providing guidance to future appraisal and development decisions.


Sign in / Sign up

Export Citation Format

Share Document