scholarly journals Results of downhole microseismic monitoring at a pilot hydraulic fracturing site in Poland — Part 2: S-wave splitting analysis

2018 ◽  
Vol 6 (3) ◽  
pp. SH49-SH58 ◽  
Author(s):  
Wojciech Gajek ◽  
Michał Malinowski ◽  
James P. Verdon

Observations of azimuthal seismic anisotropy provide useful information, notably on stress orientation and the presence of preexisting natural fracture systems, during hydraulic fracturing operations. Seismic anisotropy can be observed through the measurement of S-wave splitting (SWS) on waveforms generated by microseismic events and recorded on downhole geophone arrays. We have developed measurements of azimuthal anisotropy from a Lower Paleozoic shale play in northern Poland. The observed orthorhombic anisotropic symmetry system is dominated by a vertically transverse isotropy (VTI) fabric, produced by the alignment of anisotropic platy clay minerals and by thin horizontal layering and overprinted by a weak azimuthal anisotropy. Despite the dominating VTI fabric, we successfully identified a weaker horizontal-transverse isotropy fabric striking east–southeast. We do this by constraining the rock-physics model inversion with VTI background parameters incorporated from other geophysical methods: microseismic velocity model inversion, 3D reflection seismic, and borehole cross-dipole sonic logs. The obtained orientation is consistent with a preexisting natural fracture set that has been observed using X-ray micro-imaging (XRMI) image logs from a nearby vertical well. The present-day regional maximum horizontal stress direction differs from the observed fracture strike by approximately 45°. This implies that the SWS measurements recorded during hydraulic stimulation of a shale-gas reservoir are imaging the preexisting natural fracture set, which influences the treatment efficiency, instead of the present-day stress.

2018 ◽  
Vol 6 (3) ◽  
pp. SH39-SH48 ◽  
Author(s):  
Wojciech Gajek ◽  
Jacek Trojanowski ◽  
Michał Malinowski ◽  
Marek Jarosiński ◽  
Marko Riedel

A precise velocity model is necessary to obtain reliable locations of microseismic events, which provide information about the effectiveness of the hydraulic stimulation. Seismic anisotropy plays an important role in microseismic event location by imposing the dependency between wave velocities and its propagation direction. Building an anisotropic velocity model that accounts for that effect allows for more accurate location of microseismic events. We have used downhole microseismic records from a pilot hydraulic fracturing experiment in Lower-Paleozoic shale gas play in the Baltic Basin, Northern Poland, to obtain accurate microseismic events locations. We have developed a workflow for a vertical transverse isotropy velocity model construction when facing a challenging absence of horizontally polarized S-waves in perforation shot data, which carry information about Thomsen’s [Formula: see text] parameter and provide valuable constraints for locating microseismic events. We extract effective [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] for each layer from the P- and SV-wave arrivals of perforation shots, whereas the unresolved [Formula: see text] is retrieved afterward from the SH-SV-wave delay time of selected microseismic events. An inverted velocity model provides more reliable location of microseismic events, which then becomes an essential input for evaluating the hydraulic stimulation job effectiveness in the geomechanical context. We evaluate the influence of the preexisting fracture sets and obliquity between the borehole trajectory and principal horizontal stress direction on the hydraulic treatment performance. The fracturing fluid migrates to previously fractured zones, while the growth of the microseismic volume in consecutive stages is caused by increased penetration of the above-lying lithologic formations.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. B183-B195 ◽  
Author(s):  
K. De Meersman ◽  
J.-M. Kendall ◽  
M. van der Baan

We relocate 303 microseismic events recorded in 1998 by sensors in a single borehole in the North Sea Valhall oil field. A semiautomated array analysis method repicks the P- and S-wave arrival times and P-wave polarizations, which are needed to locate these events. The relocated sources are confined predominantly to a [Formula: see text]-thick zone just above the reservoir, and location uncertainties are half those of previous efforts. Multiplet analysis identifies 40 multiplet groups, which include 208 of the 303 events. The largest group contains 24 events, and five groups contain 10 or more events. Within each multiplet group, we further improve arrival-time picking through crosscorrelation, which enhances the relative accuracy of the relocated events and reveals that more than 99% of the seismic activity lies spatially in three distinct clusters. The spatial distribution of events and wave-form similarities reveal two faultlike structures that match well with north-northwest–south-southeast-trending fault planes interpreted from 3D surface seismic data. Most waveform differences between multiplet groups located on these faults can be attributed to S-wave phase content and polarity or P-to-S amplitude ratio. The range in P-to-S amplitude ratios observed on the faults is explained best in terms of varying source mechanisms. We also find a correlation between multiplet groups and temporal variations in seismic anisotropy, as revealed by S-wave splitting analysis. We explain these findings in the context of a cyclic recharge and dissipation of cap-rock stresses in response to production-driven compaction of the underlying oil reservoir. The cyclic nature of this mechanism drives the short-term variations in seismic anisotropy and the reactivation of microseismic source mechanisms over time.


2020 ◽  
Author(s):  
Adam Robinson ◽  
Gaye Bayracki ◽  
Calum MacDonald ◽  
Ben Callow ◽  
Giuseppe Provenzano ◽  
...  

<p>Scanner pockmark, located in the Witch Ground Graben region of the North Sea, is a ~900 m by 450 m, ~22 m-deep elliptical seafloor depression at which vigorous and persistent methane venting is observed. Previous studies here have indicated the presence of chimney structures which extend to depths of several hundred meters, and which may represent the pathways along which upwards fluid migration occurs. A proposed geometry for the crack networks associated with such chimney structures comprises a background pattern outside the chimney with unconnected vertical fractures preferentially aligned with the regional stress field, and a more connected, possibly concentric fracture system within the chimney. The measurement of seismic anisotropy using shear-wave splitting (SWS) allows the presence, orientation and density of subsurface fracture networks to be determined. If the proposed model for the fracture structure of a chimney feature is correct, we would expect, therefore, to be able to observe variations in the anisotropy measured inside and outside of the chimney.</p><p>Here we test this hypothesis, using observations of SWS recorded on ocean bottom seismographs (OBS), with the arrivals generated using two different air gun seismic sources with a frequency range of ~10-200 Hz. We apply a layer-stripping approach based on observations of SWS events and shallow subsurface structures mapped using additional geophysical data to progressively determine and correct for the orientations of anisotropy for individual layers. The resulting patterns are then interpreted in the context of the chimney structure as mapped using other geophysical data. By comparing observations both at the Scanner pockmark and at a nearby reference site, we aim to further contribute to the understanding of the structures and their role in governing fluid migration. Our interpretation will additionally be informed by combining the field observations with analogue laboratory measurements and new and existing rock physics models.</p><p>This work has received funding from the NERC (CHIMNEY; NE/N016130/1) and EU Horizon 2020 programme (STEMM-CCS; No.654462).</p>


Geophysics ◽  
2021 ◽  
pp. 1-55
Author(s):  
Jihui Ding ◽  
Anthony C. Clark ◽  
Tiziana Vanorio ◽  
Adam D. Jew ◽  
John R. Bargar

From geochemical reactions to proppant emplacement, hydraulic fracturing induces various chemo-mechanical fracture alterations in shale reservoirs. Hydraulic fracturing through the injection of a vast amount and variety of fluids and proppants has substantial impacts on fluid flow and hydrocarbon production. There is a strong need to improve our understanding on how fracture alterations affect flow pathways within the stimulated rock volume and develop monitoring tools. We conducted time-lapse rock physics experiments on clay-rich (carbonate-poor) Marcellus shales to characterize the acoustic velocity and permeability responses to fracture acidizing and propping. Acoustic P- and S-wave velocities and fracture permeability were measured before and after laboratory-induced fracture alterations along with microstructural imaging through X-ray computed tomography and scanning electron microscopy. Our experiments show that S-wave velocity is an important geophysical observable, particularly the S-wave polarized perpendicular to fractures since it is sensitive to fracture stiffness. The acidizing and propping of a fracture both decrease its elastic stiffness. This effect is stronger for acidizing, and so it is possible that proppant monitoring will be masked by chemical alteration except when propping is highly efficient (i.e., most fractures are propped). However, fracture permeability is undermined by the softening of fracture surfaces due to acidizing, while greatly enhanced by propping. These contrasting effects on fluid flow in combination with similar seismic attributes indicate the importance of experiments to improve existing rock physics models, which must include changes to the rock frame. Such improvements are necessary for a correct interpretation of seismic velocity monitoring of flow pathways in stimulated shales.


2018 ◽  
Vol 12 (5) ◽  
pp. 1715-1734 ◽  
Author(s):  
Johanna Kerch ◽  
Anja Diez ◽  
Ilka Weikusat ◽  
Olaf Eisen

Abstract. One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s−1 for P-wave and 200 m s−1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s−1 for the alpine ice core and 59 m s−1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s−1 for P-wave and 280 m s−1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s−1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s−1 for P wave and more than 200 m s−1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s−1 per 10 cm). Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy, without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1261-1271 ◽  
Author(s):  
Andrey A. Ortega ◽  
George A. McMechan

Dynamic ray shooting with interpolation is an economical way of computing approximate Green’s functions in 3-D heterogeneous anisotropic media. The amplitudes, traveltimes, and polarizations of the reflected rays arriving at the surface are interpolated to synthesize three‐component seismograms at the desired recording points. The algorithm is applied to investigate kinematic quasi-P-wave propagation and converted quasi-P-S-wave splitting variations produced in reflections from the bottom of a layer containing two sets of intersecting dry vertical fractures as a function of the angle between the fracture sets and of the intensity of fracturing. An analytical expression is derived for the stiffness constant C16 that extends Hudson’s second‐order scattering theory to include tetragonal-2 symmetry systems. At any offset, the amount of splitting in nonorthogonal (orthorhombic symmetry) intersecting fracture sets is larger than in orthogonal (tetragonal-1 symmetry) systems, and it increases nonlinearly as a function of the intensity of fracturing as offset increases. Such effects should be visible in field data, provided that the dominant frequency is sufficiently high and the offset is sufficiently large. The amount of shear‐wave splitting at vertical incidence increases nonlinearly as a function of the intensity of fracturing and increases nonlinearly from zero in the transition from tetragonal-1 anisotropy through orthorhombic to horizontal transverse isotropy; the latter corresponds to the two crack systems degenerating to one. The zero shear‐wave splitting corresponds to a singularity, at which the vertical velocities of the two quasi‐shear waves converge to a single value that is both predicted theoretically and illustrated numerically. For the particular case of vertical fractures, there is no P-to-S conversion of vertically propagating (zero‐offset) waves. If the fractures are not vertical, the normal incidence P-to-S reflection coefficient is not zero and thus is a potential diagnostic of fracture orientation.


2000 ◽  
Vol 37 (2-3) ◽  
pp. 415-426 ◽  
Author(s):  
Stéphane Rondenay ◽  
Michael G Bostock ◽  
Thomas M Hearn ◽  
Donald J White ◽  
Hua Wu ◽  
...  

In the past decade, the Abitibi-Grenville Lithoprobe transect has been the site of numerous geological and geophysical surveys oriented towards understanding the lithospheric evolution of the southeastern Superior and adjoining Grenville provinces. Among the different geophysical methods that have been employed, earthquake seismology provides the widest range of information on the deep structures of the upper mantle. This paper presents a review of studies, both complete and ongoing, involving teleseismic datasets that were collected in 1994 and 1996 along the transect. A complete shear-wave splitting analysis has been performed on the 1994 dataset as part of a comparative study on electrical and seismic anisotropies. Results suggest a correlation between the two anisotropies (supported by xenolith data) and favour a lithospheric origin for the seismic anisotropy. The two anisotropies are believed to represent the fossilized remnants of Archean strain fields in the lithospheric roots of the Canadian Shield. Preliminary splitting results for the 1996 experiment suggest that the S-wave azimuthal anisotropy may be depth dependent and laterally varying. Ongoing receiver function analysis and traveltime inversion studies provide velocity models of the crust and upper mantle beneath the study area. Preliminary receiver function results reveal the presence of an S-velocity increase at ~90-100 km depth which appears to be laterally continuous over 200 km. Traveltime inversion models indicate the presence of an elongate, low-velocity anomaly beneath the southern portion of the 1996 array which strikes obliquely to major geological structures at the surface (e.g., Grenville Front). Preliminary interpretation relates this anomaly to the same process (e.g., fixed mantle plume, continental rifting) responsible for the emplacement of the Monteregian Hills igneous province.


2021 ◽  
Author(s):  
Derya Keleş ◽  
Tuna Eken ◽  
Judith M. Confal ◽  
Tuncay Taymaz

<p>The fundamental knowledge on seismic anisotropy inferred from various data sets can enhance our understanding of its vertical resolution that is critical for a better interpretation of past and current dynamics and resultant crustal and mantle kinematics in the Hellenic Trench and its hinterland. To investigate the nature of deformation zones, we perform both local S-wave splitting (SWS) measurements and receiver functions (RFs) analysis. Our preliminary findings from the harmonic decomposition technique performed on radial and tangential RFs suggest relatively more substantial anisotropic signals in the lower crust and uppermost mantle with respect to upper and middle crustal structure in the region. Apparent anisotropic orientations obtained from RFs harmonic decomposition process show several consistencies with those discovered from local SWS measurements at selected stations. The actual anisotropic orientation for the structures, however, requires further modelling of the receiver functions obtained.</p>


2020 ◽  
Vol 221 (3) ◽  
pp. 2075-2090 ◽  
Author(s):  
Joseph Asplet ◽  
James Wookey ◽  
Michael Kendall

SUMMARY Observations of seismic anisotropy in the lowermost mantle—D″—are abundant. As seismic anisotropy is known to develop as a response to plastic flow in the mantle, constraining lowermost mantle anisotropy allows us to better understand mantle dynamics. Measuring shear-wave splitting in body wave phases which traverse the lowermost mantle is a powerful tool to constrain this anisotropy. Isolating a signal from lowermost mantle anisotropy requires the use of multiple shear-wave phases, such as SKS and SKKS. These phases can also be used to constrain azimuthal anisotropy in D″: the ray paths of SKS and SKKS are nearly coincident in the upper mantle but diverge significantly at the core–mantle boundary. Any significant discrepancy in the shear-wave splitting measured for each phase can be ascribed to anisotropy in D″. We search for statistically significant discrepancies in shear-wave splitting measured for a data set of 420 SKS–SKKS event–station pairs that sample D″ beneath the Eastern Pacific. To ensure robust results, we develop a new multiparameter approach which combines a measure derived from the eigenvalue minimization approach for measuring shear-wave splitting with an existing splitting intensity method. This combined approach allows for easier automation of discrepant shear-wave splitting analysis. Using this approach we identify 30 SKS–SKKS event–station pairs as discrepant. These predominantly sit along a backazimuth range of 260°–290°. From our results we interpret a region of azimuthal anisotropy in D″ beneath the Eastern Pacific, characterized by null SKS splitting, and mean delay time of $1.15 \, \mathrm{ s}$ in SKKS. These measurements corroborate and expand upon previous observations made using SKS–SKKS and S–ScS phases in this region. Our preferred explanation for this anisotropy is the lattice-preferred orientation of post-perovskite. A plausible mechanism for the deformation causing this anisotropy is the impingement of subducted material from the Farallon slab at the core–mantle boundary.


Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. WA125-WA133 ◽  
Author(s):  
Boris Gurevich ◽  
Marina Pervukhina ◽  
Dina Makarynska

One of the main causes of azimuthal anisotropy in sedimentary rocks is anisotropy of tectonic stresses in the earth’s crust. We have developed an analytic model for seismic anisotropy caused by the application of a small anisotropic stress. We first considered an isotropic linearly elastic medium (porous or nonporous) permeated by a distribution of discontinuities with random (isotropic) orientation (such as randomly oriented compliant grain contacts or cracks). The geometry of individual discontinuities is not specified. Instead, their behavior is defined by a ratio B of the normal to tangential excess compliances. When this isotropic rock is subjected to a small compressive stress (isotropic or anisotropic), the number of cracks along a particular plane is reduced in proportion to the normal stress traction acting on that plane. This effect is modeled using the Sayers-Kachanov noninteractive approximation. The model predicts that such anisotropic crack closure yields elliptical anisotropy, regardless of the value of the compliance ratio B. It also predicts the ratio of Thomsen’s anisotropy parameters [Formula: see text] as a function of the compliance ratio B and Poisson’s ratio of the unstressed rock. A comparison of the model predictions with the results of laboratory measurements indicates a reasonable agreement for moderate magnitudes of uniaxial stress (as high as 30 MPa). These results can be used for differentiating stress-induced anisotropy from that caused by aligned fractures. Conversely, if the cause of anisotropy is known, then the anisotropy pattern allows one to estimate P-wave anisotropy from S-wave anisotropy.


Sign in / Sign up

Export Citation Format

Share Document