Acoustic velocity and permeability of acidized and propped fractures in shale

Geophysics ◽  
2021 ◽  
pp. 1-55
Author(s):  
Jihui Ding ◽  
Anthony C. Clark ◽  
Tiziana Vanorio ◽  
Adam D. Jew ◽  
John R. Bargar

From geochemical reactions to proppant emplacement, hydraulic fracturing induces various chemo-mechanical fracture alterations in shale reservoirs. Hydraulic fracturing through the injection of a vast amount and variety of fluids and proppants has substantial impacts on fluid flow and hydrocarbon production. There is a strong need to improve our understanding on how fracture alterations affect flow pathways within the stimulated rock volume and develop monitoring tools. We conducted time-lapse rock physics experiments on clay-rich (carbonate-poor) Marcellus shales to characterize the acoustic velocity and permeability responses to fracture acidizing and propping. Acoustic P- and S-wave velocities and fracture permeability were measured before and after laboratory-induced fracture alterations along with microstructural imaging through X-ray computed tomography and scanning electron microscopy. Our experiments show that S-wave velocity is an important geophysical observable, particularly the S-wave polarized perpendicular to fractures since it is sensitive to fracture stiffness. The acidizing and propping of a fracture both decrease its elastic stiffness. This effect is stronger for acidizing, and so it is possible that proppant monitoring will be masked by chemical alteration except when propping is highly efficient (i.e., most fractures are propped). However, fracture permeability is undermined by the softening of fracture surfaces due to acidizing, while greatly enhanced by propping. These contrasting effects on fluid flow in combination with similar seismic attributes indicate the importance of experiments to improve existing rock physics models, which must include changes to the rock frame. Such improvements are necessary for a correct interpretation of seismic velocity monitoring of flow pathways in stimulated shales.

Geophysics ◽  
1985 ◽  
Vol 50 (12) ◽  
pp. 2480-2491 ◽  
Author(s):  
David P. Yale

The need to extract more information about the subsurface from geophysical and petrophysical measurements has led to a great interest in the study of the effect of rock and fluid properties on geophysical and petrophysical measurements. Rock physics research in the last few years has been concerned with studying the effect of lithology, fluids, pore geometry, and fractures on velocity; the mechanisms of attenuation of seismic waves; the effect of anisotropy; and the electrical and dielectric properties of rocks. Understanding the interrelationships between rock properties and their expression in geophysical and petrophysical data is necessary to integrate geophysical, petrophysical, and engineering data for the enhanced exploration and characterization of petroleum reservoirs. The use of amplitude offsets, S‐wave seismic data, and full‐waveform sonic data will help in the discrimination of lithology. The effect of in situ temperatures and pressures must be taken into account, especially in fractured and unconsolidated reservoirs. Fluids have a strong effect on seismic velocities, through their compressibility, density, and chemical effects on grain and clay surfaces. S‐wave measurements should help in bright spot analysis for gas reservoirs, but theoretical considerations still show that a deep, consolidated reservoir will not have any appreciable impedance contrast due to gas. The attenuation of seismic waves has received a great deal of attention recently. The idea that Q is independent of frequency has been challenged by experimental and theoretical findings of large peaks in attenuation in the low kHz and hundreds of kHz regions. The attenuation is thought to be due to fluid‐flow mechanisms and theories suggest that there may be large attenuation due to small amounts of gas in the pore space even at seismic frequencies. Models of the effect of pores, cracks, and fractures on seismic velocity have also been studied. The thin‐crack velocity models appear to be better suited for representing fractures than pores. The anisotropy of seismic waves, especially the splitting of polarized S‐waves, may be diagnostic of sets of oriented fractures in the crust. The electrical properties of rocks are strongly dependent upon the frequency of the energy and logging is presently being done at various frequencies. The effects of frequency, fluid salinity, clays, and pore‐grain geometry on electrical properties have been studied. Models of porous media have been used extensively to study the electrical and elastic properties of rocks. There has been great interest in extracting geometrical parameters about the rock and pore space directly from microscopic observation. Other models have focused on modeling several different properties to find relationships between rock properties.


2018 ◽  
Author(s):  
Quinn C. Wenning ◽  
Claudio Madonna ◽  
Antoine de Haller ◽  
Jean-Pierre Burg

Abstract. This study characterizes the elastic and fluid flow properties systematically across a ductile-brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the fault core show that foliation-parallel p- and s- wave velocities systematically increase from the host rock towards the fault core, while permeability is reduced nearest to the fault core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the fault core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic fault cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow, and exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.


2018 ◽  
Vol 6 (3) ◽  
pp. SH49-SH58 ◽  
Author(s):  
Wojciech Gajek ◽  
Michał Malinowski ◽  
James P. Verdon

Observations of azimuthal seismic anisotropy provide useful information, notably on stress orientation and the presence of preexisting natural fracture systems, during hydraulic fracturing operations. Seismic anisotropy can be observed through the measurement of S-wave splitting (SWS) on waveforms generated by microseismic events and recorded on downhole geophone arrays. We have developed measurements of azimuthal anisotropy from a Lower Paleozoic shale play in northern Poland. The observed orthorhombic anisotropic symmetry system is dominated by a vertically transverse isotropy (VTI) fabric, produced by the alignment of anisotropic platy clay minerals and by thin horizontal layering and overprinted by a weak azimuthal anisotropy. Despite the dominating VTI fabric, we successfully identified a weaker horizontal-transverse isotropy fabric striking east–southeast. We do this by constraining the rock-physics model inversion with VTI background parameters incorporated from other geophysical methods: microseismic velocity model inversion, 3D reflection seismic, and borehole cross-dipole sonic logs. The obtained orientation is consistent with a preexisting natural fracture set that has been observed using X-ray micro-imaging (XRMI) image logs from a nearby vertical well. The present-day regional maximum horizontal stress direction differs from the observed fracture strike by approximately 45°. This implies that the SWS measurements recorded during hydraulic stimulation of a shale-gas reservoir are imaging the preexisting natural fracture set, which influences the treatment efficiency, instead of the present-day stress.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. O23-O33 ◽  
Author(s):  
Tiziana Vanorio ◽  
Amos Nur ◽  
Yael Ebert

The fundamental concept of time-lapse seismic monitoring is that changes in physical parameters—such as saturation, pore fluid pressure, temperature, and stress—affect rock and fluid properties, which in turn alter the seismic velocity and density. Increasingly, however, time-lapse seismic monitoring is called upon to quantify subsurface changes due in part to chemical reactions between injected fluids and the host rocks. This study springs from a series of laboratory experiments and high-resolution images assessing the changes in microstructure, transport, and seismic properties of fluid-saturated sandstones and carbonates injected with [Formula: see text]. Results show that injecting [Formula: see text] into a brine-rock system induces chemo-mechanical mechanisms that permanently change the rock frame. Injecting [Formula: see text] into brine-saturated-sandstones induces salt precipitation primarily at grain contacts and within small pore throats. In rocks with porosity lower than 10%, salt precipitation reduces permeability and increases P- and S-wave velocities of the dry rock frame. On the other hand, injecting [Formula: see text]-rich water into micritic carbonates induces dissolution of the microcrystalline matrix, leading to porosity enhancement and chemo-mechanical compaction under pressure. In this situation, the elastic moduli of the dry rock frame decrease. The results in these two scenarios illustrate that the time-lapse seismic response of chemically stimulated systems cannot be modeled as a pure fluid-substitution problem. A first set of empirical relationships links the time-variant effects of injection to the elastic properties of the rock frame using laboratory velocity measurements and advanced imaging.


SPE Journal ◽  
2020 ◽  
Vol 25 (02) ◽  
pp. 632-645
Author(s):  
Feng Liang ◽  
Yanhui Han ◽  
Hui-Hai Liu ◽  
Rajesh Saini ◽  
Jose I. Rueda

Summary Hydraulic fracturing has been widely used in stimulating tight carbonate reservoirs to improve oil and gas production. Improving and maintaining the connectivity between the natural and induced microfractures in the far-field and the primary fracture networks are essential to enhancing the well production rate because these natural and induced unpropped microfractures tend to close after the release of hydraulic pressure during production. This paper provides a conceptual approach for an improved hydraulic fracturing treatment to enhance the well productivity by minimizing the closure of the microfractures in tight carbonate reservoirs and enlarging the fracture aperture. The proposed improved fracturing treatment was to use the mixture of the delayed acid-generating materials along with microproppants in the pad/prepad fluids during the engineering process. The microproppants were used to support the opening of natural or newly induced microfractures. The delayed acid-generating materials were used in this strategy to enlarge the flow pathways within microfractures owing to degradation introduced under elevated temperatures and interaction with the calcite formation. The feasibility of the proposed approach is evaluated by a series of the proof-of-concept laboratory coreflood experiments and numerical modeling results. First, one series of experiments (Experiments 1–3) was designed to investigate the depth of the voids on the fracture surface generated by the solid delayed acid-generating materials under different flow rates of the treatment fluids and different temperatures. This set of tests was conducted on a core plug assembly that was composed of half-core Eagle Ford Sample, half-core hastelloy core plug, and a mixture of solid delayed acid-generating materials [polyglycolic acid (PGA)] along with small-sized proppants sandwiched by two half-cores. Surface profilometer was used to quantify the surface-etched profile before and after coreflood experiments. Test results have shown that PGA materials were able to create voids or dimples on the fracture faces by their degradation under elevated temperature and the chemical reaction between the generated weak acid and the calcite-rich formation. The depth of the voids generated is related to the treatment temperature and the flow rate of the treatment fluids. Experiment 4 was conducted using two half-core splits to quantify the improvement factor of the core permeability due to the treatment with mixed sand and PGA materials. Simulations of fluid flow through proppant assembly (inside of the microfractures) using the discrete element method (DEM)–lattice Boltzmann method (LBM) coupling approach for three different scenarios (14 cases in total) were further conducted to evaluate the fracture permeability and conductivity changes under different situations such as various gaps between proppant particulates and different depths of voids generated on fracture faces: (1) fluid flow in a microfracture without proppant, (2) fluid flow in a microfracture with small-sized proppants, and (3) fluid flow in a microfracture supported by small-sized proppants and generated voids on the fracture walls. The simulation results show that with proppant support (Scenario 2), the microfracture permeability can be increased by tens to hundreds of times in comparison to Scenario 1, depending on the gaps between proppant particles. The permeability of proppant-supported microfracture (Scenario 3) can be further enhanced by the cavities created by the reactions between the generated acid and calcite formation. This work provides experimental evidence that using the mixture of the solid delayed acid-generating materials along with microproppants or small-sized proppants in stimulating tight carbonate reservoirs in the pad/prepad fluids during the engineering process may be able to effectively improve and sustain permeability of flow pathways from microfractures (either natural or induced). These findings will be beneficial to the development of an improved hydraulic fracturing treatment for stimulating tight organic-rich carbonate reservoirs.


Solid Earth ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 683-698 ◽  
Author(s):  
Quinn C. Wenning ◽  
Claudio Madonna ◽  
Antoine de Haller ◽  
Jean-Pierre Burg

Abstract. This study characterizes the elastic and fluid flow properties systematically across a ductile–brittle fault zone in crystalline rock at the Grimsel Test Site underground research laboratory. Anisotropic seismic velocities and permeability measured every 0.1 m in the 0.7 m across the transition zone from the host Grimsel granodiorite to the mylonitic core show that foliation-parallel P- and S-wave velocities systematically increase from the host rock towards the mylonitic core, while permeability is reduced nearest to the mylonitic core. The results suggest that although brittle deformation has persisted in the recent evolution, antecedent ductile fabric continues to control the matrix elastic and fluid flow properties outside the mylonitic core. The juxtaposition of the ductile strain zone next to the brittle zone, which is bounded inside the two mylonitic cores, causes a significant elastic, mechanical, and fluid flow heterogeneity, which has important implications for crustal deformation and fluid flow and for the exploitation and use of geothermal energy and geologic waste storage. The results illustrate how physical characteristics of faults in crystalline rocks change in fault zones during the ductile to brittle transitions.


2015 ◽  
Vol 3 (3) ◽  
pp. ST43-ST53 ◽  
Author(s):  
Mehdi Mokhtari ◽  
Azra N. Tutuncu ◽  
Gregory N. Boitnott

Contrary to the assumption in cubic law, the surface of fractures has some degree of roughness, which impacts their fluid dynamics. Incorporating the effect of roughness can improve the simulation of fluid flow in fractures and faults, as well as proppant transport in hydraulic fracturing. To investigate the effect of roughness on the fluid flow, we created a fracture using the Brazilian test, and its roughness was measured using a laser profilometer. Experimental permeability measurements showed a reduction in permeability as the effective stress increased. However, the unmatching surfaces of the fracture prevented its complete mechanical closure. Numerical simulations of the fluid dynamics were conducted on the measured fracture geometry. We determined that the hydraulic fracture aperture is less than the mechanical fracture aperture and that there was anisotropy in the fracture permeability. The ratio of hydraulic fracture aperture to mechanical fracture aperture, as well as anisotropy in fracture permeability, increased when the fracture aperture decreased. The anisotropy in fracture permeability was 45% at the lowest simulated fracture aperture. Integrating the experimental and numerical data, we estimated the fracture porosity and fracture permeability.


Geophysics ◽  
1994 ◽  
Vol 59 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Gary Mavko ◽  
Diane Jizba

Seismic velocity dispersionin fluid-saturated rocks appears to be dominated by tow mecahnisms: the large scale mechanism modeled by Biot, and the local flow or squirt mecahnism. The tow mechanisms can be distuinguished by the ratio of P-to S-wave dispersions, or more conbeniently, by the ratio of dynamic bulk to shear compliance dispersions derived from the wave velocities. Our formulation suggests that when local flow denominates, the dispersion of the shear compliance will be approximately 4/15 the dispersion of the compressibility. When the Biot mechanism dominates, the constant of proportionality is much smaller. Our examination of ultrasonic velocities from 40 sandstones and granites shows that most, but not all, of the samples were dominated by local flow dispersion, particularly at effective pressures below 40 MPa.


Sign in / Sign up

Export Citation Format

Share Document