acoustic velocity
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 53)

H-INDEX

30
(FIVE YEARS 4)

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1804
Author(s):  
Michele Brunetti ◽  
Giovanni Aminti ◽  
C. Brand Wessels ◽  
Michela Nocetti

Before round timber can be profitably used in construction, it needs structural characterization. The visual grading of Eucalyptus grandis poles was integrated with additional parameters developed by multivariate regression analysis. Acoustic velocity and dynamic modulus of elasticity were combined with density and pole diameter in the estimation of bending strength and stiffness. The best models achieved were used to group the visually graded material into qualitative structural classes. Overall, dynamic modulus of elasticity was the best single predictor; and adding density and diameter to the model improved the estimation of strength but not of stiffness. The developed parameters separated the material into two classes with very distinct mechanical properties. The models including velocity as a parameter did not perform as well. The strength grading of Eucalyptus grandis poles can be effectively improved by combining visual parameters and nondestructive measurements. The determination of the dynamic modulus of elasticity as a grading parameter should be preferred over that of acoustic velocity.


2021 ◽  
Author(s):  
Gengxin Ning ◽  
Yu Wang ◽  
Guangyu Jing ◽  
Xuejin Zhao

Abstract In this paper, an estimator for underwater DOA estimation is proposed by using a cross-linear nested array with arbitrary cross angle. The estimator excludes the variation acoustic velocity by deriving the geometric relation of the cross-linear array on the proposed algorithm. Therefore, compared with traditional DOA estimation algorithms via linear array, this estimator eliminates systematic errors caused by the uncertainty factor of the acoustic velocity in the underwater environment. Compared with the traditional acoustic velocity independent algorithm, this estimator uses the nested array and improves the performance of DOA estimation. In addition, the estimator is based on arbitrary angle of the cross-linear array, so it is more flexible in practical applications. Numerical simulations are provided to validate the analytical derivations and corroborate the improved performance in underwater environments where the actual acoustic velocity is not accurate.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012053
Author(s):  
Y Enns ◽  
A Kazakin ◽  
Y Akulshin ◽  
A Mizerov ◽  
R Kleimanov

Abstract This paper results in results of analyzing the possibility of creating an acoustic velocity sensor using epitaxial GaN films. Technology for the fabrication of a microelectromechanical acoustic velocity sensor was developed and a prototype of the sensor was produced. The simulation of the characteristics of the obtained acoustic velocity sensors was carried out on the basis of the measured electrical characteristics, where the sensitivity and the directional pattern were determined.


Geophysics ◽  
2021 ◽  
pp. 1-55
Author(s):  
Jihui Ding ◽  
Anthony C. Clark ◽  
Tiziana Vanorio ◽  
Adam D. Jew ◽  
John R. Bargar

From geochemical reactions to proppant emplacement, hydraulic fracturing induces various chemo-mechanical fracture alterations in shale reservoirs. Hydraulic fracturing through the injection of a vast amount and variety of fluids and proppants has substantial impacts on fluid flow and hydrocarbon production. There is a strong need to improve our understanding on how fracture alterations affect flow pathways within the stimulated rock volume and develop monitoring tools. We conducted time-lapse rock physics experiments on clay-rich (carbonate-poor) Marcellus shales to characterize the acoustic velocity and permeability responses to fracture acidizing and propping. Acoustic P- and S-wave velocities and fracture permeability were measured before and after laboratory-induced fracture alterations along with microstructural imaging through X-ray computed tomography and scanning electron microscopy. Our experiments show that S-wave velocity is an important geophysical observable, particularly the S-wave polarized perpendicular to fractures since it is sensitive to fracture stiffness. The acidizing and propping of a fracture both decrease its elastic stiffness. This effect is stronger for acidizing, and so it is possible that proppant monitoring will be masked by chemical alteration except when propping is highly efficient (i.e., most fractures are propped). However, fracture permeability is undermined by the softening of fracture surfaces due to acidizing, while greatly enhanced by propping. These contrasting effects on fluid flow in combination with similar seismic attributes indicate the importance of experiments to improve existing rock physics models, which must include changes to the rock frame. Such improvements are necessary for a correct interpretation of seismic velocity monitoring of flow pathways in stimulated shales.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
ARAVIND I B ◽  
ROHIT RANJAN BHATTACHARJEE ◽  
Satyanarayanan R. Chakravarthy

Author(s):  
Baozhi Pan ◽  
◽  
Weiyi Zhou ◽  
Yuhang Guo ◽  
Zhaowei Si ◽  
...  

A saturation evaluation model suitable for Nanpu volcanic rock formation is established based on the experiment of acoustic velocity changing with saturation during the water drainage process of volcanic rock in the Nanpu area. The experimental data show that in the early stage of water drainage, the fluid distribution in the pores of rock samples satisfies the patchy formula. With the decrease of the sample saturation, the fluid distribution in the pores is more similar to the uniform fluid distribution model. In this paper, combined with the Gassmann-Brie and patchy formula, the calculation equation of Gassmann-Brie-Patchy (G-B-P) saturation is established, and the effect of contact softening is considered. The model can be used to calculate water saturation based on acoustic velocity, which provides a new idea for the quantitative evaluation of volcanic oil and gas reservoirs using seismic and acoustic logging data.


2021 ◽  
Vol 11 (11) ◽  
pp. 5019
Author(s):  
Moaz Salih ◽  
John J. G. Reijmer ◽  
Ammar El Husseiny ◽  
Mazin Bashri ◽  
Hassan Eltom ◽  
...  

Many of the world’s productive Jurassic reservoirs are intensively bioturbated, including the sediments of the Upper Jurassic Hanifa Formation. Hydrocarbon exploration and production from such reservoirs require a reliable prediction of petrophysical properties (i.e., porosity, permeability, acoustic velocity) by linking and assessment of ichnofabrics and trace fossils and determining their impact on reservoir quality. In this study, we utilized outcrop carbonate samples from the Hanifa Formation to understand the main controlling factors on reservoir quality (porosity and permeability) and acoustic velocity of bioturbated carbonates, by using thin-section petrography, SEM, XRD, CT scan, porosity, permeability, and acoustic velocity measurement. The studied samples are dominated by Thalassinoides burrows that have burrow intensity ranging from ~4% to 27%, with porosity and permeability values ranging from ~1% to 20%, and from 0.002 mD up to 1.9 mD, respectively. Samples with coarse grain-filled burrows have higher porosity (average µ = 14.44% ± 3.25%) and permeability (µ = 0.56 mD ± 0.55) than samples with fine grain-filled burrows (µ = 6.56% ± 3.96%, and 0.07 mD ± 0.16 mD). The acoustic velocity is controlled by an interplay of porosity, bioturbation, and mineralogy. Samples with relatively high porosity and permeability values (>10% and >0.1 mD) have lower velocities (<5 km/s) compared to tight samples with low porosities and permeabilities (<10% and <0.1 mD). The mineralogy of the analyzed samples is dominated by calcite (~94% of total samples) with some quartz content (~6% of total samples). Samples characterized with higher quartz (>10% quartz content) show lower velocities compared to the samples with lower quartz content. Bioturbation intensity, alone, has no control on velocity, but when combined with burrow fill, it can be easier to discriminate between high and low velocity samples. Fine grain-filled burrows have generally lower porosity and higher velocities (µ = 5.46 km/s) compared to coarse grain-filled burrows (µ = 4.52 km/s). Understanding the main controlling factor on petrophysical properties and acoustic velocity of bioturbated strata can enhance our competency in reservoir quality prediction and modeling for these bioturbated units.


2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Romulo Carvalho ◽  
Fernando Moraes

Abstract We investigate three formulations for computing acoustic velocity of natural gas and derive an equation for the heat capacity ratio, which plays a central role in these formulations. The first formulation is a compilation of fundamental equations available in the engineering literature, referred to as the DASH formulation. The second formulation is a development from the first, in which we use the derived equation for the heat capacity ratio (modified DASH). The third formulation is a mainstream method implemented in Geoscience (BW formulation). All three formulations stem from virial Equations of State that take preponderance in the exploration stage, when the detailed fluid composition is unknown and compositional methods are frequently inapplicable. We test the formulations on an extensive experimental data set of acoustic velocity of natural gases and compare the resulting accuracies. Both DASH and modified DASH formulations provide significantly higher accuracy when compared to the BW formulation. Additionally, the modified DASH, as we derive in this work, has the highest accuracy at pressures above 7000 psi, a condition typically encountered in the Brazilian pre-salt reservoirs. In a final step, we investigate how these different formulations and corresponding accuracies in velocity computation may affect seismic modeling, using a single interface model between a dense gas reservoir and a sealing rock. A direct comparison of amplitude versus offset modeling using our modified DASH formulation and the BW formulation shows up to 50% difference in amplitude calculation in a sensitivity exercise, especially at the longer offsets and higher pressures.


Sign in / Sign up

Export Citation Format

Share Document