Multispectral coherence: Which decomposition should we use?

2020 ◽  
Vol 8 (1) ◽  
pp. T115-T129 ◽  
Author(s):  
Bin Lyu ◽  
Jie Qi ◽  
Fangyu Li ◽  
Ying Hu ◽  
Tao Zhao ◽  
...  

Seismic coherence is commonly used to delineate structural and stratigraphic discontinuities. We generally use full-bandwidth seismic data to calculate coherence. However, some seismic stratigraphic features may be buried in this full-bandwidth data but can be highlighted by certain spectral components. Due to thin-bed tuning phenomena, discontinuities in a thicker stratigraphic feature may be tuned and thus better delineated at a lower frequency, whereas discontinuities in the thinner units may be tuned and thus better delineated at a higher frequency. Additionally, whether due to the seismic data quality or underlying geology, certain spectral components exhibit higher quality over other components, resulting in correspondingly higher quality coherence images. Multispectral coherence provides an effective tool to exploit these observations. We have developed the performance of multispectral coherence using different spectral decomposition methods: the continuous wavelet transform (CWT), maximum entropy, amplitude volume technique (AVT), and spectral probe. Applications to a 3D seismic data volume indicate that multispectral coherence images are superior to full-bandwidth coherence, providing better delineation of incised channels with less noise. From the CWT experiments, we find that providing exponentially spaced CWT components provides better coherence images than equally spaced components for the same computation cost. The multispectral coherence image computed using maximum entropy spectral voices further improves the resolution of the thinner channels and small-scale features. The coherence from AVT data set provides continuous images of thicker channel boundaries but poor images of the small-scale features inside the thicker channels. Additionally, multispectral coherence computed using the nonlinear spectral probes exhibits more balanced and reveals clear small-scale geologic features inside the thicker channel. However, because amplitudes are not preserved in the nonlinear spectral probe decomposition, noise in the noisier shorter period components has an equal weight when building the covariance matrix, resulting in increased noise in the generated multispectral coherence images.

2021 ◽  
Author(s):  
Anthony Aming

Abstract See how application of a fully trained Artificial Intelligence (AI) / Machine Learning (ML) technology applied to 3D seismic data volumes delivers an unbiased data driven assessment of entire volumes or corporate seismic data libraries quickly. Whether the analysis is undertaken using onsite hardware or a cloud based mega cluster, this automated approach provides unparalleled insights for the interpretation and prospectivity analysis of any dataset. The Artificial Intelligence (AI) / Machine Learning (ML) technology uses unsupervised genetics algorithms to create families of waveforms, called GeoPopulations, that are used to derive Amplitude, Structure (time or depth depending on the input 3D seismic volume) and the new seismic Fitness attribute. We will show how Fitness is used to interpret paleo geomorphology and facies maps for every peak, trough and zero crossing of the 3D seismic volume. Using the Structure, Amplitude and Fitness attribute maps created for every peak, trough and zero crossing the Exploration and Production (E&P) team can evaluate and mitigate Geological and Geophysical (G&G) risks and uncertainty associated with their petroleum systems quickly using the entire 3D seismic data volume.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. V407-V414
Author(s):  
Yanghua Wang ◽  
Xiwu Liu ◽  
Fengxia Gao ◽  
Ying Rao

The 3D seismic data in the prestack domain are contaminated by impulse noise. We have adopted a robust vector median filter (VMF) for attenuating the impulse noise from 3D seismic data cubes. The proposed filter has two attractive features. First, it is robust; the vector median that is the output of the filter not only has a minimum distance to all input data vectors, but it also has a high similarity to the original data vector. Second, it is structure adaptive; the filter is implemented following the local structure of coherent seismic events. The application of the robust and structure-adaptive VMF is demonstrated using an example data set acquired from an area with strong sedimentary rhythmites composed of steep-dipping thin layers. This robust filter significantly improves the signal-to-noise ratio of seismic data while preserving any discontinuity of reflections and maintaining the fidelity of amplitudes, which will facilitate the reservoir characterization that follows.


2020 ◽  
Vol 8 (2) ◽  
pp. T217-T229
Author(s):  
Yang Mu ◽  
John Castagna ◽  
Gabriel Gil

Sparse-layer reflectivity inversion decomposes a seismic trace into a limited number of simple layer responses and their corresponding reflection coefficients for top and base reflections. In contrast to sparse-spike inversion, the applied sparsity constraint is less biased against layer thickness and can thus better resolve thin subtuning layers. Application to a 3D seismic data set in Southern Alberta produces inverted impedances that have better temporal resolution and lateral stability and a less blocky appearance than sparse-spike inversion. Bandwidth extension harmonically extrapolated the frequency spectra of the inverted layers and nearly doubled the usable bandwidth. Although the prospective glauconitic sand tunes at approximately 37 m, bandwidth extension reduced the tuning thickness to 22 m. Bandwidth-extended data indicate a higher correlation with synthetic traces than the original seismic data and reveal features below the original tuning thickness. After bandwidth extension, the channel top and base are more evident on inline and crossline profiles. Lateral facies changes interpreted from the inverted acoustic impedance of the bandwidth-extended data are consistent with observations in wells.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. B183-B191 ◽  
Author(s):  
M. Riedel ◽  
G. Bellefleur ◽  
S. R. Dallimore ◽  
A. Taylor ◽  
J. F. Wright

Amplitude and frequency anomalies associated with lakes and drainage systems were observed in a 3D seismic data set acquired in the Mallik area, Mackenzie Delta, Northwest Territories, Canada. The site is characterized by large gas hydrate deposits inferred from well-log analyses and coring. Regional interpretation of the gas hydrate occurrences is mainly based on seismic amplitude anomalies, such as brightening or blanking of seismic energy. Thus, the scope of this research is to understand the nature of the amplitude behavior in the seismic data. We have therefore analyzed the 3D seismic data to define areas with amplitude reduction due to contamination from lakes and channels and to distinguish them from areas where amplitude blanking may be a geologic signal. We have used the spectral ratio method to define attenuation (Q) over different areas in the 3D volume and subsequently applied Q-compensation to attenuate lateral variations ofdispersive absorption. Underneath larger lakes, seismic amplitude is reduced and the frequency content is reduced to [Formula: see text], which is half the original bandwidth. Traces with source-receiver pairs located inside of lakes show an attenuation factor Q of [Formula: see text], approximately half of that obtained for source-receiver pairs situated on deep, continuous permafrost outside of lakes. Deeper reflections occasionally identified underneath lakes show low-velocity-related pull-down. The vertical extent of the washout zones is enhanced by acquisition with limited offsets and from processing parameters such as harsh mute functions to reduce noise from surface waves. The strong attenuation and seismic pull-down may indicate the presence of unfrozen water in deeper lakes and unfrozen pore water within the sediments underlying the lakes. Thus, the blanking underneath lakes is not necessarily related to gas migration or other in situ changes in physical properties potentially associated with the presence of gas hydrate.


2015 ◽  
Vol 3 (4) ◽  
pp. SAE29-SAE58 ◽  
Author(s):  
Tao Zhao ◽  
Vikram Jayaram ◽  
Atish Roy ◽  
Kurt J. Marfurt

During the past decade, the size of 3D seismic data volumes and the number of seismic attributes have increased to the extent that it is difficult, if not impossible, for interpreters to examine every seismic line and time slice. To address this problem, several seismic facies classification algorithms including [Formula: see text]-means, self-organizing maps, generative topographic mapping, support vector machines, Gaussian mixture models, and artificial neural networks have been successfully used to extract features of geologic interest from multiple volumes. Although well documented in the literature, the terminology and complexity of these algorithms may bewilder the average seismic interpreter, and few papers have applied these competing methods to the same data volume. We have reviewed six commonly used algorithms and applied them to a single 3D seismic data volume acquired over the Canterbury Basin, offshore New Zealand, where one of the main objectives was to differentiate the architectural elements of a turbidite system. Not surprisingly, the most important parameter in this analysis was the choice of the correct input attributes, which in turn depended on careful pattern recognition by the interpreter. We found that supervised learning methods provided accurate estimates of the desired seismic facies, whereas unsupervised learning methods also highlighted features that might otherwise be overlooked.


2014 ◽  
Vol 2 (2) ◽  
pp. SE29-SE38 ◽  
Author(s):  
Bob A. Hardage ◽  
Donald Wagner

We show examples of S-S images created from multicomponent seismic data generated by vertical-force sources that can be quite useful to seismic interpreters. Two source types are used: vertical vibrators and shot-hole explosives. We first discuss S-S images made from data generated by a vertical vibrator and recorded with vertical receiver arrays of 3C geophones. We next show images extracted from surface-based 3C geophones deployed around this VSP well as a 3D seismic grid. The energy sources used to generate these surface 3D seismic data were shot-hole explosives. In all data examples, we observe that each type of vertical-force source (vertical vibrator and shot-hole explosive) produces abundant direct-S energy on radial and transverse geophones. We find only minimal amounts of P-wave energy on transverse-receiver data. In contrast, radial-receiver data have significant P-wave events intermingled with radial-S events. The minimal amount of P-wave noise on transverse-receiver data makes it easier to study S-S wave physics and to create S-S images with transverse-S data. The data examples focus on transverse-S data created by vertical-force sources because interpreters will find it more convenient to process and use this S-mode. Subsequent publications will assign equal weight to radial-S and transverse-S data.


2016 ◽  
Vol 4 (1) ◽  
pp. SA25-SA37 ◽  
Author(s):  
Xiujuan Wang ◽  
Jin Qian ◽  
Timothy S. Collett ◽  
Hesheng Shi ◽  
Shengxiong Yang ◽  
...  

A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.


2017 ◽  
Vol 17 (2) ◽  
pp. 91
Author(s):  
Reni Agustiani ◽  
Puguh Hiskiawan ◽  
Rano Rano

It has been performed data interpretation of 3D seismic data and drilling field exploration wellsBasin Nova ScotiaKanada to know structure fault on the field Missisauga Formation. Seismic dataused is 601 inline, crossline 482, and the data used drilling wells are two wells which there is a loggamma ray, sonic logs and log RHOB. Interpretation is done the analysis of the map in thestructure of time and analysis of seismic attribute maps based on the geometrical attribute serves todetermine their structure or structural faults of the data volume 3D. Based on the time structuremap well known that first well is in the region heights and second wells is in low region. Based oninterpretation of the map attributes known three faults are two major fault and one minor fault.Two faults are in the East Sea drilling wells and a small fracture that was on its western side. Thethree fults are directed from Northwest to the Southeast. Fault is expected to serve as ahydrocarbon trap in the area that will be accumulated in drilling wells.Keywords: geometrical attribute, Seismic data, drilling wells, time structure map.


Sign in / Sign up

Export Citation Format

Share Document