Characterization of Marcellus shale fracture systems for fracture model development using 3D seismic and microseismic data

Author(s):  
Thomas H. Wilson* ◽  
Ariel K. Hart ◽  
Pete Sullivan
1997 ◽  
Vol 35 (2-3) ◽  
pp. 85-91
Author(s):  
D. A. Barton ◽  
J. D. Woodruff ◽  
T. M. Bousquet ◽  
A. M. Parrish

If promulgated as proposed, effluent guidelines for the U.S. pulp and paper industry will impose average monthly and maximum daily numerical limits of discharged AOX (adsorbable organic halogen). At this time, it is unclear whether the maximum-day variability factor used to establish the proposed effluent guidelines will provide sufficient margin for mills to achieve compliance during periods of normal but variable operating conditions within the pulping and bleaching processes. Consequently, additional information is needed to relate transient AOX loadings with final AOX discharges. This paper presents a simplistic dynamic model of AOX decay during treatment. The model consists of hydraulic characterization of an activated sludge process and a first-order decay coefficient for AOX removal. Data for model development were acquired by frequent collection of influent and effluent samples at a bleach kraft mill during a bleach plant shutdown and startup sequence.


1999 ◽  
Vol 122 (3) ◽  
pp. 476-483 ◽  
Author(s):  
A. M. Goijaerts ◽  
L. E. Govaert ◽  
F. P. T. Baaijens

This study is focused on the description of ductile fracture initiation, which is needed to predict product shapes in the blanking process. Two approaches are elaborated using a local ductile fracture model. According to literature, characterization of such a model should take place under loading conditions, comparable to the application. Therefore, the first approach incorporates the characterization of a ductile fracture model in a blanking experiment. The second approach is more favorable for industry. In this approach a tensile test is used to characterize the fracture model, instead of a complex and elaborate blanking experiment. Finite element simulations and blanking experiments are performed for five different clearances to validate both approaches. In conclusion it can be stated that for the investigated material, the first approach gives very good results within the experimental error. The second approach, the more favorable one for industry, yields results within 6 percent of the experiments over a wide, industrial range of clearances, when a newly proposed criterion is used. [S1087-1357(00)02202-4]


Author(s):  
Oluwatoyin Khadijat Olaleye ◽  
Pius Adekunle Enikanselu ◽  
Michael Ayuk Ayuk

AbstractHydrocarbon accumulation and production within the Niger Delta Basin are controlled by varieties of geologic features guided by the depositional environment and tectonic history across the basin. In this study, multiple seismic attribute transforms were applied to three-dimensional (3D) seismic data obtained from “Reigh” Field, Onshore Niger Delta to delineate and characterize geologic features capable of harboring hydrocarbon and identifying hydrocarbon productivity areas within the field. Two (2) sand units were delineated from borehole log data and their corresponding horizons were mapped on seismic data, using appropriate check-shot data of the boreholes. Petrophysical summary of the sand units revealed that the area is characterized by high sand/shale ratio, effective porosity ranged from 16 to 36% and hydrocarbon saturation between 72 and 92%. By extracting attribute maps of coherence, instantaneous frequency, instantaneous amplitude and RMS amplitude, characterization of the sand units in terms of reservoir geomorphological features, facies distribution and hydrocarbon potential was achieved. Seismic attribute results revealed (1) characteristic patterns of varying frequency and amplitude areas, (2) major control of hydrocarbon accumulation being structural, in terms of fault, (3) prospective stratigraphic pinch-out, lenticular thick hydrocarbon sand, mounded sand deposit and barrier bar deposit. Seismic Attributes analysis together with seismic structural interpretation revealed prospective structurally high zones with high sand percentage, moderate thickness and high porosity anomaly at the center of the field. The integration of different seismic attribute transforms and results from the study has improved our understanding of mapped sand units and enhanced the delineation of drillable locations which are not recognized on conventional seismic interpretations.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. KS1-KS10 ◽  
Author(s):  
Zhishuai Zhang ◽  
James W. Rector ◽  
Michael J. Nava

We have studied microseismic data acquired from a geophone array deployed in the horizontal section of a well drilled in the Marcellus Shale near Susquehanna County, Pennsylvania. Head waves were used to improve event location accuracy as a substitution for the traditional P-wave polarization method. We identified that resonances due to poor geophone-to-borehole coupling hinder arrival-time picking and contaminate the microseismic data spectrum. The traditional method had substantially greater uncertainty in our data due to the large uncertainty in P-wave polarization direction estimation. We also identified the existence of prominent head waves in some of the data. These head waves are refractions from the interface between the Marcellus Shale and the underlying Onondaga Formation. The source location accuracy of the microseismic events can be significantly improved by using the P-, S-wave direct arrival times and the head wave arrival times. Based on the improvement, we have developed a new acquisition geometry and strategy that uses head waves to improve event location accuracy and reduce acquisition cost in situations such as the one encountered in our study.


2019 ◽  
Vol 827 ◽  
pp. 55-60
Author(s):  
A. Vettorello ◽  
G.A. Campo

This paper shows the applicability of a non-linear Finite Element (FE) methodology to analyse the elasto-plastic behaviour and the energy absorption of a padding noise-protection material applied to the vehicle interior components. This material is a sandwich built from alternating layers of polymeric foam and of glass fibre composite. The approach considers two design steps. The first one involves the experimental characterization of the material while the latter deals with the assessment of the numerical models validated for a full-vehicle crash analysis.


2014 ◽  
Author(s):  
V. Zampetti ◽  
X. Marquez ◽  
S. Mukund ◽  
S. Sanvig Bach ◽  
M. Ipui Emang

Sign in / Sign up

Export Citation Format

Share Document