The value of information from horizontal distributed acoustic sensing compared to multicomponent geophones via machine learning

Author(s):  
Whitney J. Trainor-Guitton ◽  
Samir Jreij ◽  
Michael Morphew ◽  
Ivan Lim Chen Ning
Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7527
Author(s):  
Mugdim Bublin

Distributed Acoustic Sensing (DAS) is a promising new technology for pipeline monitoring and protection. However, a big challenge is distinguishing between relevant events, like intrusion by an excavator near the pipeline, and interference, like land machines. This paper investigates whether it is possible to achieve adequate detection accuracy with classic machine learning algorithms using simulations and real system implementation. Then, we compare classical machine learning with a deep learning approach and analyze the advantages and disadvantages of both approaches. Although acceptable performance can be achieved with both approaches, preliminary results show that deep learning is the more promising approach, eliminating the need for laborious feature extraction and offering a six times lower event detection delay and twelve times lower execution time. However, we achieved the best results by combining deep learning with the knowledge-based and classical machine learning approaches. At the end of this manuscript, we propose general guidelines for efficient system design combining knowledge-based, classical machine learning, and deep learning approaches.


2020 ◽  
Author(s):  
Camille Jestin ◽  
Clément Hibert ◽  
Gaëtan Calbris ◽  
Vincent Lanticq

<p>Distributed Acoustic Sensing (DAS) is an innovative technique which has been recently employed for near-surface geophysics purposes. It involves the use of fibre-optic cable as a sensor. The fibre is analysed by sending a laser pulse from an interrogator unit. The phase of the backscattered signal contains the information on the strain on the cable, enabling the detection of a passing acoustic wave with enough energy for the cable excitation. Allowing the interrogation of long profiles and the generation of a dense spatial sampling, uneasy to obtain with classic geophysical techniques, DAS instrumentation then proved its relevance for seismic applications but also for infrastructure monitoring.</p><p>During DAS acquisition, and more precisely when closely looking at infrastructures integrity, it is necessary to clearly identify the source of the acoustic vibrations at the structure neighbourhood. Indeed, in the context of pipeline monitoring for example, it appears important to be able to classify events which generate seismic signals recorded by DAS systems and which can be related to a potential threat for the structure. In order to launch an alarm if necessary, the source identification must be fast, accurate and robust. Moreover, because DAS acquisition can generate traces every few meters along fibres of tens of kilometres, the used machine-learning algorithm must demonstrate its ability to handle a big amount of data.</p><p>In this study, we analyse the efficiency of the Random Forests (RF) machine-learning algorithm applied to data acquired with DAS system for the discrimination of event sources. RF algorithm has been selected because of its ability to handle large numbers of attributes related to signal characteristics and to enable a good reliability for the discrimination of sources. This algorithm has already proved its efficiency for automated classification of seismic waveforms (e.g. earthquakes, volcanic tremors, rock falls, avalanches, etc.).</p><p>We focus our study on tests lead along a gas pipeline instrumented with fibre-optic cable. Different third-party works have been conducted: excavation, saw sections, drill, jackhammer, etc. We work on the discrimination of six classes of seismic source. After running a detection phase based on a threshold on signal energy, we obtain several hundred of exploitable seismic traces to inject to the RF algorithm. We demonstrate the efficiency of the application of machine learning on DAS data to discriminate seismic waveforms from the correct class, with an overall precision on our test set of 99%.</p>


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1592
Author(s):  
Biwei Wang ◽  
Yuan Mao ◽  
Islam Ashry ◽  
Yousef Al-Fehaid ◽  
Abdulmoneim Al-Shawaf ◽  
...  

Red palm weevil (RPW) is a detrimental pest, which has wiped out many palm tree farms worldwide. Early detection of RPW is challenging, especially in large-scale farms. Here, we introduce the combination of machine learning and fiber optic distributed acoustic sensing (DAS) techniques as a solution for the early detection of RPW in vast farms. Within the laboratory environment, we reconstructed the conditions of a farm that includes an infested tree with ∼12 day old weevil larvae and another healthy tree. Meanwhile, some noise sources are introduced, including wind and bird sounds around the trees. After training with the experimental time- and frequency-domain data provided by the fiber optic DAS system, a fully-connected artificial neural network (ANN) and a convolutional neural network (CNN) can efficiently recognize the healthy and infested trees with high classification accuracy values (99.9% by ANN with temporal data and 99.7% by CNN with spectral data, in reasonable noise conditions). This work paves the way for deploying the high efficiency and cost-effective fiber optic DAS to monitor RPW in open-air and large-scale farms containing thousands of trees.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Samir F. Jreij ◽  
Whitney J. Trainor-Guitton ◽  
Michael Morphew ◽  
Ivan Lim Chen Ning

Abstract Faults play an important role in recharging many geothermal reservoirs, and seismic information can image the locations of these faults. The value of information (VOI) metric is used to objectively quantify and compare the value of two types of seismic receiver data via a machine learning approach. The demonstrated VOI methodology is novel by including spatial models from seismic data and obtaining the information statistics from machine learning. Our two-dimensional numerical experiments compare images created from sparsely spaced (80 m), two-component geophone sampling to high spatial resolution (1 m), single-component DAS. We used a three-fold cross validation of a U-Net convolutional neural networks to achieve average classification statistics. The results suggest that when horizontal sources are utilized, geophones and DAS identify reflectors and non-reflectors at roughly the same rate. The average F1 score for horizontal DAS is 0.939 and 0.931 for geophones. For images created from a vertical source, DAS performed marginally better (F1 = 0.919) than geophones (F1 = 0.877). Our transferrable methodology can provide guidance on which acquisition scenarios can improve images of important structures in the subsurface and present an efficient method for obtaining reliability statistics from high-dimensional, spatial data.


2017 ◽  
Vol 7 (8) ◽  
pp. 841 ◽  
Author(s):  
Javier Tejedor ◽  
Javier Macias-Guarasa ◽  
Hugo Martins ◽  
Juan Pastor-Graells ◽  
Pedro Corredera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document