Filtering out extraneous noise in brain signal using geophysical processing

Author(s):  
Julie A. Aitken
Keyword(s):  
1990 ◽  
Vol 112 (2) ◽  
pp. 175-182 ◽  
Author(s):  
S. C. Wooh ◽  
I. M. Daniel

Conventional ultrasonic C-scanning sometimes produces distorted and degraded images due to a variety of reasons, including surface roughness, beam dispersion, extraneous noise and imperfect fidelity of the total acquisition system. Enhancement techniques, using computer data acquisition and processing, can be used to enhance and restore the image. Enhancement techniques described include contrast stretching and median filtering, histogram equalization, thresholding, dynamic thresholding, thresholding depending on boundary characteristics, one-dimensional segmentation and intensity scans with hidden line removal. These enhancement techniques were applied and illustrated for five different types of damage in graphite/epoxy composite materials: (1) Embedded film patch in quasi-isotropic laminate; (2) impact damage in quasi-isotropic laminate; (3) matrix cracking due to static loading of crossply laminate; (4) fatigue damage in crossply laminate; and (5) thermally induced cracks in a thick crossply laminate. There is no single technique that is optimum in all cases. A suitable combination of techniques must be selected for optimum image quality.


Author(s):  
Andrew L. Bodling ◽  
Anupam Sharma

A study was done to investigate how boundary layer tripping mechanisms can affect the ability of a permeable surface FW-H solver to predict the far field noise emanating from an airfoil trailing edge. The far field noise in a baseline airfoil as well as the baseline airfoil fitted with fin let fences was analyzed. Two numerical boundary layer tripping mechanisms were implemented. The results illustrated the importance of choosing a permeable integration surface that is outside any high frequency waves emanating from the trip region. The results also illustrated the importance of choosing a boundary layer tripping mechanism that minimizes any extraneous noise so that an integration surface can be taken close to the airfoil.


2021 ◽  
Vol 263 (3) ◽  
pp. 3861-3870
Author(s):  
Kenji Homma ◽  
Paul R. Braunwart ◽  
Patrick L. Clavette

Digital Image Correlation (DIC) is an image-based method for measuring displacement and/or stain on the surface of a structure. When coupled with a stereo pair of highspeed cameras, DIC can also capture three-dimensional dynamic deformation of a structure under vibratory loading. However, high frequency and small amplitude displacement typically associated with structural vibrations mean that extra care is required during measurement and data processing. It becomes more challenging when thermal disturbances are present in the optical path, for example from a heated air flow, which introduces extraneous noise due to disturbances in the refractive index. In the present study, a simple composite plate was vibrated under a shaker excitation and stereo DIC measurements were performed. The obtained vibratory displacement results were compared against accelerometers and a laser Doppler vibrometer. Heated air flow was introduced in front of the plate to observe the effects of thermal disturbances on the DIC measurements. Although the contributions from the thermal disturbances were clearly visible in the DIC displacement data, it was shown that the vibratory deflections of the structure could still be extracted by post processing of the DIC data.


2010 ◽  
Vol 58 (5) ◽  
pp. 484 ◽  
Author(s):  
Kwai-cheong Chau ◽  
Kin-che Lam ◽  
Lawal M. Marafa

1973 ◽  
Vol 95 (1) ◽  
pp. 31-36 ◽  
Author(s):  
A. W. Roberts ◽  
W. H. Charlton

In the determination of the dynamic characteristics of bulk handling systems the complexity of the problem usually makes experimental identification necessary. Experimental techniques which are based on statistical methods are known to be more reliable than conventional methods such as frequency response analysis. A statistical technique that employs a pseudo-random binary coded signal (prbs) to perturbate the system followed by cross correlation analysis may be used very effectively to identify the dynamic characteristics of the system even in the presence of extraneous noise signals. This paper describes this technique and discusses its application to two areas in the bulk handling field; the first deals with the determination of the natural frequencies of screw conveyors used for grain handling and the second deals with the identification of the dynamic characteristics of grain discharge chutes.


2021 ◽  
Author(s):  
◽  
Alan J. Taylor

<p>The performances of observers in auditory experiments are likely to be affected by extraneous noise from physiological or neurological sources and also by decision noise. Attempts have been made to measure the characteristics of this noise, in particular its level relative to that of masking noise provided by the experimenter. This study investigated an alternative approach, a method of analysis which seeks to reduce the effects of extraneous noise on measures derived from experimental data. Group-Operating-Characteristic (GOC) analysis was described by Watson (1963) and investigated by Boven (1976). Boven distinguished between common and unique noise. GOC analysis seeks to reduce the effects of unique noise. In the analysis, ratings of the same stimulus on different occasions are sunned. The cumulative frequency distributions of the resulting variable define a GOC curve. This curve is analogous to an ROC curve, but since the effects of unique noise tend to be averaged out during the summation, the GOC is less influenced by extraneous noise. The amount of improvement depends on the relative variance of the unique and common noise (k). Higher levels of unique noise lead to greater improvement. In this study four frequency discrimination experiments were carried out with pigeons as observers, using a three-key operant procedure. In other experiments, computer-simulated observers were used. The first two pigeon experiments, and the simulations, were based on known distributions of common noise. The ROCs for the constructed distributions provided a standard with which the GOC curve could be compared. In all cases the analysis led to improvements in the measures of performance and increased the match of the experimental results and the ideal ROC. The amount of improvement, as well as reflecting the level of unique noise, depended on the number of response categories. With smaller numbers of categories, improvement was reduced and k was underestimated. Since the pigeon observers made only "yes" or "no" responses, the results for the pigeon experiments were compared with the results of simulations with known distributions in order to obtain more accurate estimates of k. The third and fourth pigeon experiments involved frequency discrimination tasks with a standard of 450 Hz and comparison frequencies of 500, 600, 700, 800 and 900 Hz, and 650 Hz, respectively. With the multiple comparison frequencies the results were very variable. This was due to the small number of trials for each frequency and the small number of replications. The results obtained with one comparison frequency were more orderly but, like those of the previous experiment, were impossible to distinguish from those which would be expected if there was no common noise. A final set of experiments was based on a hardware simulation. Signals first used in the fourth pigeon experiment were processed by a system made up of a filter, a zero-axis crossing detector and a simulated observer. The results of these experiments were compatible with the possibility that the amount of unique noise in the pigeon experiments overwhelmed any evidence of common noise.</p>


1985 ◽  
Vol 20 (11) ◽  
pp. 1197-1210 ◽  
Author(s):  
A.H. Wertheim ◽  
P. van Gelder ◽  
A. Lautin ◽  
E. Peselow ◽  
N. Cohen

2007 ◽  
Vol 129 (6) ◽  
pp. 784-802 ◽  
Author(s):  
Colin C. Olson ◽  
M. D. Todd ◽  
Keith Worden ◽  
Charles Farrar

Active excitation is an emerging area of study within the field of structural health monitoring whereby prescribed inputs are used to excite the structure so that damage-sensitive features may be extracted from the structural response. This work demonstrates that the parameters of a system of ordinary differential equations may be adjusted via an evolutionary algorithm to produce excitations that improve the sensitivity and robustness to extraneous noise of state-space based damage detection features extracted from the structural response to such excitations. A simple computational model is used to show that significant gains in damage detection and quantification may be obtained from the response of a spring-mass system to improved excitations generated by three separate representative ordinary differential equation systems. Observed differences in performance between the excitations produced by the three systems cannot be explained solely by considering the frequency characteristics of the excitations. This work demonstrates that the particular dynamic evolution of the excitation applied to the structure can be as important as the frequency characteristics of said excitation if improved damage detection is desired. In addition, the implied existence of a globally optimum excitation (in the sense of improved damage assessment) for the model system is explored.


2021 ◽  
Author(s):  
Juan Pablo Yepez Placencia

<p><b>Mechatronic chordophones are stringed instruments that integrate mechanical components and electronics to make music. These instruments offer precise control over multiple sound parameters and expressive techniques for enhanced musical expression.</b></p> <p>There have been multiple successful mechatronic chordophone designs,from robotic slide guitars to bass guitar robots. Among these designs are plucked string and pitch shifting mechatronic chordophones, which make music by exciting the string with a picking mechanism and selecting musical notes with a pitch shifter mechanism. This configuration enables these systems to enhance their musical performance through pitch-based expressive techniques and micro tonal pitches. </p> <p>However, even if these instruments can achieve speeds and precision beyond the capabilities of a human performer, their expressive capabilities are limited. It is difficult for mechatronic chordophones to perform dynamic variations and expressive techniques,and the presence of extraneous noise usually interferes with their musical performance. Furthermore, it is still challenging for users to control such instruments.</p> <p>We have built two mechatronic chordophones. The first is Protochord, a mechatronic monochord prototype. We used this system as a platform for iterative design to develop new expressive mechatronic chordophone subsystems. The second is Azure Talos,a multi-string mechatronic chordophone designed to outperform other existing systems and to afford a wide array of parameters for musical expression. </p> <p>Our research has led to the development of novel mechatronic chordophone subsystems such as: a revolving picking mechanism with superior dynamic variation capabilities compared to that of other existing designs; a fast and precise robot arm pitch shifting mechanism that affords pitch-based expressive techniques; and an optical pickup that rejects extraneous noise. We have demonstrated the technical capabilities of these designs through quantitative evaluation processes, in many cases providing the first set of quantitative tests in the literature of these types of sub-assemblies and systems. A key aim is to provide standards and benchmarks in evaluation criteria which may be used in the development of new mechatronic chordophones.</p> <p>Finally, we developed strategies to assess Azure Talos' musical capabilities through standard guitar techniques, repertoire examples,and creative musical explorations.</p>


Sign in / Sign up

Export Citation Format

Share Document