Petroacoustics and composition of presalt rocks from Santos Basin

2019 ◽  
Vol 38 (5) ◽  
pp. 342-348 ◽  
Author(s):  
Guilherme Fernandes Vasquez ◽  
Marcio José Morschbacher ◽  
Camila Wense Dias dos Anjos ◽  
Yaro Moisés Parisek Silva ◽  
Vanessa Madrucci ◽  
...  

The deposition of the presalt section from Santos Basin began when Gondwana started to break up and South America and Africa were separating. Initial synrift carbonate deposits affected by relatively severe tectonic activity evolved to a lacustrine carbonate environment during the later stages of basin formation. Although the reservoirs are composed of carbonate rocks, the occurrence of faults and the intense colocation of igneous rocks served as a source of chemical elements uncommon in typical carbonate environments. Consequently, beyond the presence of different facies with complex textures and pore geometries, the presalt reservoir rocks present marked compositional and microstructural variability. Therefore, rock-physics modeling is used to understand and interpret the extensive laboratory measurements of P-wave velocities, S-wave velocities, and density that we have undertaken on the presalt carbonate cores from Santos Basin. We show that quartz and exotic clay minerals (such as stevensite and other magnesium-rich clay minerals), which have different values of elastic moduli and Poisson's ratio as compared to calcite and dolomite, may introduce noticeable “Poisson's reflectivity anomalies” on prestack seismic data. Moreover, although the authors concentrate their attention on composition, it will become clear that pore-space geometry also may influence seismic rock properties of presalt carbonate reservoirs.

Geophysics ◽  
1985 ◽  
Vol 50 (12) ◽  
pp. 2480-2491 ◽  
Author(s):  
David P. Yale

The need to extract more information about the subsurface from geophysical and petrophysical measurements has led to a great interest in the study of the effect of rock and fluid properties on geophysical and petrophysical measurements. Rock physics research in the last few years has been concerned with studying the effect of lithology, fluids, pore geometry, and fractures on velocity; the mechanisms of attenuation of seismic waves; the effect of anisotropy; and the electrical and dielectric properties of rocks. Understanding the interrelationships between rock properties and their expression in geophysical and petrophysical data is necessary to integrate geophysical, petrophysical, and engineering data for the enhanced exploration and characterization of petroleum reservoirs. The use of amplitude offsets, S‐wave seismic data, and full‐waveform sonic data will help in the discrimination of lithology. The effect of in situ temperatures and pressures must be taken into account, especially in fractured and unconsolidated reservoirs. Fluids have a strong effect on seismic velocities, through their compressibility, density, and chemical effects on grain and clay surfaces. S‐wave measurements should help in bright spot analysis for gas reservoirs, but theoretical considerations still show that a deep, consolidated reservoir will not have any appreciable impedance contrast due to gas. The attenuation of seismic waves has received a great deal of attention recently. The idea that Q is independent of frequency has been challenged by experimental and theoretical findings of large peaks in attenuation in the low kHz and hundreds of kHz regions. The attenuation is thought to be due to fluid‐flow mechanisms and theories suggest that there may be large attenuation due to small amounts of gas in the pore space even at seismic frequencies. Models of the effect of pores, cracks, and fractures on seismic velocity have also been studied. The thin‐crack velocity models appear to be better suited for representing fractures than pores. The anisotropy of seismic waves, especially the splitting of polarized S‐waves, may be diagnostic of sets of oriented fractures in the crust. The electrical properties of rocks are strongly dependent upon the frequency of the energy and logging is presently being done at various frequencies. The effects of frequency, fluid salinity, clays, and pore‐grain geometry on electrical properties have been studied. Models of porous media have been used extensively to study the electrical and elastic properties of rocks. There has been great interest in extracting geometrical parameters about the rock and pore space directly from microscopic observation. Other models have focused on modeling several different properties to find relationships between rock properties.


2020 ◽  
Vol 223 (1) ◽  
pp. 622-631
Author(s):  
Lin Zhang ◽  
Jing Ba ◽  
José M Carcione

SUMMARY Determining rock microstructure remains challenging, since a proper rock-physics model is needed to establish the relation between pore microstructure and elastic and transport properties. We present a model to estimate pore microstructure based on porosity, ultrasonic velocities and permeability, assuming that the microstructure consists on randomly oriented stiff equant pores and penny-shaped cracks. The stiff pore and crack porosity varying with differential pressure is estimated from the measured total porosity on the basis of a dual porosity model. The aspect ratio of pores and cracks and the crack density as a function of differential pressure are obtained from dry-rock P- and S-wave velocities, by using a differential effective medium model. These results are used to invert the pore radius from the matrix permeability by using a circular pore model. Above a crack density of 0.13, the crack radius can be estimated from permeability, and below that threshold, the radius is estimated from P-wave velocities, taking into account the wave dispersion induced by local fluid flow between pores and cracks. The approach is applied to experimental data for dry and saturated Fontainebleau sandstone and Chelmsford Granite.


Geophysics ◽  
1998 ◽  
Vol 63 (5) ◽  
pp. 1659-1669 ◽  
Author(s):  
Christine Ecker ◽  
Jack Dvorkin ◽  
Amos Nur

We interpret amplitude variation with offset (AVO) data from a bottom simulating reflector (BSR) offshore Florida by using rock‐physics‐based synthetic seismic models. A previously conducted velocity and AVO analysis of the in‐situ seismic data showed that the BSR separates hydrate‐bearing sediments from sediments containing free methane. The amplitude at the BSR are increasingly negative with increasing offset. This behavior was explained by P-wave velocity above the BSR being larger than that below the BSR, and S-wave velocity above the BSR being smaller than that below the BSR. We use these AVO and velocity results to infer the internal structure of the hydrated sediment. To do so, we examine two micromechanical models that correspond to the two extreme cases of hydrate deposition in the pore space: (1) the hydrate cements grain contacts and strongly reinforces the sediment, and (2) the hydrate is located away from grain contacts and does not affect the stiffness of the sediment frame. Only the second model can qualitatively reproduce the observed AVO response. Thus inferred internal structure of the hydrate‐bearing sediment means that (1) the sediment above the BSR is uncemented and, thereby, mechanically weak, and (2) its permeability is very low because the hydrate clogs large pore‐space conduits. The latter explains why free gas is trapped underneath the BSR. The seismic data also indicate the absence of strong reflections at the top of the hydrate layer. This fact suggests that the high concentration of hydrates in the sediment just above the BSR gradually decreases with decreasing depth. This effect is consistent with the fact that the low‐permeability hydrated sediments above the BSR prevent free methane from migrating upwards.


2020 ◽  
Vol 8 (4) ◽  
pp. T851-T868
Author(s):  
Andrea G. Paris ◽  
Robert R. Stewart

Combining rock-property analysis with multicomponent seismic imaging can be an effective approach for reservoir quality prediction in the Bakken Formation, North Dakota. The hydrocarbon potential of shale is indicated on well logs by low density, high gamma-ray response, low compressional-wave (P-wave) and shear-wave (S-wave) velocities, and high neutron porosity. We have recognized the shale intervals by cross plotting sonic velocities versus density. Intervals with total organic carbon (TOC) content higher than 10 wt% deviate from lower TOC regions in the density domain and exhibit slightly lower velocities and densities (<2.30 g/cm3). We consider TOC to be the principal factor affecting changes in the density and P- and S-wave velocities in the Bakken shales, where VP/ VS ranges between 1.65 and 1.75. We generate the synthetic seismic data using an anisotropic version of the Zoeppritz equations, including estimated Thomsen’s parameters. For the tops of the Upper and Lower Bakken, the amplitude shows a negative intercept and a positive gradient, which corresponds to an amplitude variation with offset of class IV. The P-impedance error decreases by 14% when incorporating the converted-wave information in the inversion process. A statistical approach using multiattribute analysis and neural networks delimits the zones of interest in terms of P-impedance, density, TOC content, and brittleness. The inverted and predicted results show reasonable correlations with the original well logs. The integration of well log analysis, rock physics, seismic modeling, constrained inversions, and statistical predictions contributes to identifying the areas of highest reservoir quality within the Bakken Formation.


2005 ◽  
Vol 7 ◽  
pp. 13-16
Author(s):  
Peter Japsen ◽  
Anders Bruun ◽  
Ida L. Fabricius ◽  
Gary Mavko

Seismic data are mainly used to map out structures in the subsurface, but are also increasingly used to detect differences in porosity and in the fluids that occupy the pore space in sedimentary rocks. Hydrocarbons are generally lighter than brine, and the bulk density and sonic velocity (speed of pressure waves or P-wave velocity) of hydrocarbon-bearing sedimentary rocks are therefore reduced compared to non-reservoir rocks. However, sound is transmitted in different wave forms through the rock, and the shear velocity (speed of shear waves or S-wave velocity) is hardly affected by the density of the pore fluid. In order to detect the presence of hydrocarbons from seismic data, it is thus necessary to investigate how porosity and pore fluids affect the acoustic properties of a sedimentary rock. Much previous research has focused on describing such effects in sandstone (see Mavko et al. 1998), and only in recent years have corresponding studies on the rock physics of chalk appeared (e.g. Walls et al. 1998; Røgen 2002; Fabricius 2003; Gommesen 2003; Japsen et al. 2004). In the North Sea, chalk of the Danian Ekofisk Formation and the Maastrichtian Tor Formation are important reservoir rocks. More information could no doubt be extracted from seismic data if the fundamental physical properties of chalk were better understood. The presence of gas in chalk is known to cause a phase reversal in the seismic signal (Megson 1992), but the presence of oil in chalk has only recently been demonstrated to have an effect on surface seismic data (Japsen et al. 2004). The need for a better link between chalk reservoir parameters and geophysical observations has, however, strongly increased since the discovery of the Halfdan field proved major reserves outside four-way dip closures (Jacobsen et al. 1999; Vejbæk & Kristensen 2000).


Geophysics ◽  
2021 ◽  
pp. 1-145
Author(s):  
Xiaobo Liu ◽  
Jingyi Chen ◽  
Jing Zeng ◽  
Fuping Liu ◽  
Handong Huang ◽  
...  

Amplitude variation with incidence angle (AVA) analysis is an essential tool for discriminating lithology in the hydrocarbon reservoirs. Compared with the traditional AVA inversion using only P-wave information, joint AVA inversion using PP and PS seismic data provides better estimation of rock properties (e.g., density, P- and S-wave velocities). At present, the most used AVA inversions depend on the approximations of Zoeppritz equations (e.g., Shuey and Aki-Richards approximations), which are not suitable for formations with strong contrast interfaces and seismic data with large incidence angles. Based on the previous derivation of accurate Jacobian matrix, we find that the sign of each partial derivative of reflection coefficient with respect to P-, S-wave velocities and density changes across the interface, represents good indicator for the reflection interfaces. Accordingly, we propose an adaptive stratified joint PP and PS AVA inversion using the accurate Jacobian matrix that can automatically obtain the layer information and can be further used as a constraint in the inversion of in-layer rock properties (density, P- and S-wave velocities). Due to the use of the exact Zoeppritz equations and accurate Jacobian matrix, this proposed inversion method is more accurate than traditional AVA inversion methods, has higher computational efficiency and can be applied to seismic wide-angle reflection data or seismic data acquired for formations with strong contrast interfaces. The model study shows that this proposed inversion method works better than the classical Shuey and Aki-Richards approximations at estimating reflection interfaces and in-layer rock properties. It also works well in handling a part of the complex Marmousi 2 model and real seismic data.


Author(s):  
Stian Rørheim ◽  
Andreas Bauer ◽  
Rune M Holt

Summary The impact of temperature on elastic rock properties is less-studied and thus less-understood than that of pressure and stress. Thermal effects on dispersion are experimentally observed herein from seismic to ultrasonic frequencies: Young’s moduli and Poisson’s ratios plus P- and S-wave velocities are determined by forced-oscillation (FO) from 1 to 144 Hz and by pulse-transmission (PT) at 500 kHz. Despite being the dominant sedimentary rock type, shales receive less experimental attention than sandstones and carbonates. To our knowledge, no other FO studies on shale at above ambient temperatures exist. Temperature fluctuations are enforced by two temperature cycles from 20 via 40 to 60○C and vice versa. Measured rock properties are initially irreversible but become reversible with increasing number of heating and cooling segments. Rock property-sensitivity to temperature is likewise reduced. It is revealed that dispersion shifts towards higher frequencies with increasing temperature (reversible if decreased), Young’s moduli and P-wave velocity moduli and P-wave velocity maxima occur at 40○C for frequencies below 56 Hz, and S-wave velocities remain unchanged with temperature (if the first heating segment is neglected) at seismic frequencies. In comparison, ultrasonic P- and S-wave velocities are found to decrease with increasing temperatures. Behavioural differences between seismic and ultrasonic properties are attributed to decreasing fluid viscosity with temperature. We hypothesize that our ultrasonic recordings coincide with the transition-phase separating the low- and high-frequency regimes while our seismic recordings are within the low-frequency regime.


2021 ◽  
Vol 11 (4) ◽  
pp. 1809-1822
Author(s):  
Alexander Ogbamikhumi ◽  
Osakpolor Marvellous Omorogieva

AbstractThe application of quantitative interpretation techniques for hydrocarbon prospect evaluation from seismic has become so vital. The effective employment of these techniques is dependent on several factors: the quality of the seismic and well data, sparseness of data, the physics of rock, lithological and structural complexity of the field. This study adopts reflection pattern, amplitude versus offset (AVO), Biot–Gassmann fluid substitution and cross-plot models to understand the physics of the reservoir rocks in the field by examining the sensitivity of the basic rock properties; P-wave velocity, S-wave velocity and density, to variation in lithology and fluid types in the pore spaces of reservoirs. This is to ascertain the applicability of quantitative seismic interpretation techniques to explore hydrocarbon prospect in the studied field. The results of reflection pattern and AVO models revealed that the depth of interest is dominated by Class IV AVO sands with a high negative zero offset reflectivity that reduces with offset. The AVO intercept versus gradient plot indicated that both brine and hydrocarbon bearing sands can be discriminated on seismic. Fluid substitution modelling results revealed that the rock properties will favourably respond to variation in oil saturation, but as little as 5% gas presence will result in huge change in the rock properties, which will remain constant upon further increments of gas saturation, thereby making it difficult to differentiate between economical and sub-economical saturations of gas on seismic data. Rock physics cross-plot models revealed separate cluster points typical of shale presence, brine sands and hydrocarbon bearing sands. Thus, the response of the rock properties to the modelling processes adopted favours the application of quantitative interpretation techniques to evaluate hydrocarbon in the field.


Geophysics ◽  
2000 ◽  
Vol 65 (3) ◽  
pp. 755-765 ◽  
Author(s):  
Xinhua Sun ◽  
Xiaoming Tang ◽  
C. H. (Arthur) Cheng ◽  
L. Neil Frazer

In this paper, a modification of an existing method for estimating relative P-wave attenuation is proposed. By generating synthetic waveforms without attenuation, the variation of geometrical spreading related to changes in formation properties with depth can be accounted for. With the modified method, reliable P- and S-wave attenuation logs can be extracted from monopole array acoustic waveform log data. Synthetic tests show that the P- and S-wave attenuation values estimated from synthetic waveforms agree well with their respective model values. In‐situ P- and S-wave attenuation profiles provide valuable information about reservoir rock properties. Field data processing results show that this method gives robust estimates of intrinsic attenuation. The attenuation profiles calculated independently from each waveform of an eight‐receiver array are consistent with one another. In fast formations where S-wave velocity exceeds the borehole fluid velocity, both P-wave attenuation ([Formula: see text]) and S-wave attenuation ([Formula: see text]) profiles can be obtained. P- and S-wave attenuation profiles and their comparisons are presented for three reservoirs. Their correlations with formation lithology, permeability, and fractures are also presented.


Author(s):  
Suresh Dande ◽  
◽  
Robert R. Stewart ◽  
Nikolay Dyaur ◽  
◽  
...  

Laboratory physical models play an important role in understanding rock properties and wave propagation, both theoretically and at the field scale. In some cases, 3D-printing technology can be adopted to construct complex rock models faster, more inexpensively, and with more specific features than previous model-building techniques. In this study, we use 3D-printed rock models to assist in understanding the effects of various fluids (air, water, engine oil, crude oil, and glycerol) on the models’ elastic properties. We first used a 3D-printed, 1-in. cube-shaped layered model. This model was created with a 6% primary porosity and a bulk density of 0.98 g/cc with VTI anisotropy. We next employed a similar cube but with horizontal inclusions embedded in the layered background, which contributed to its total 24% porosity (including primary porosity). For air to liquid saturation, P-velocities increased for all liquids in both models, with the highest increase being with glycerol (57%) and an approximately 45% increase for other fluids in the inclusion model. For the inclusion model (dry and saturated), we observed a greater difference between two orthogonally polarized S-wave velocities (Vs1 and Vs2) than between two P-wave velocities (VP0 and VP90). We attribute this to the S2-wave (polarized normal to both the layering and the plane of horizontal inclusions), which appears more sensitive to horizontal inclusions than the P-wave. For the inclusion model, Thomsen’s P-wave anisotropic parameter (ɛ) decreased from 26% for the air case to 4% for the water-saturated cube and to 1% for glycerol saturation. The small difference between the bulk modulus of the frame and the pore fluid significantly reduces the velocity anisotropy of the medium, making it almost isotropic. We compared our experimental results with theory and found that predictions using Schoenberg’s linear slip theory combined with Gassmann’s anisotropic equation were closer to actual measurements than Hudson’s isotropic calculations. This work provides insights into the usefulness of 3D-printed models to understand elastic rock properties and wave propagation under various fluid saturations.


Sign in / Sign up

Export Citation Format

Share Document