Performance of polymethyl pentene oxygenators for neonatal extracorporeal membrane oxygenation: a comparison with silicone membrane oxygenators

Perfusion ◽  
2005 ◽  
Vol 20 (3) ◽  
pp. 129-134 ◽  
Author(s):  
Espeed Khoshbin ◽  
Claire Westrope ◽  
Suneel Pooboni ◽  
David Machin ◽  
Hilliary Killer ◽  
...  
Perfusion ◽  
2012 ◽  
Vol 28 (1) ◽  
pp. 40-46 ◽  
Author(s):  
D Wagner ◽  
D Pasko ◽  
K Phillips ◽  
J Waldvogel ◽  
G Annich

Dexmedetomidine (DMET) is a useful agent for sedation, both alone and in combination with other agents, in critically ill patients, including those on extracorporeal membrane oxygenation (ECMO) therapy. The drug is a clonidine-like derivative with an 8-fold greater specificity for the alpha 2-receptor while maintaining respiratory and cardiovascular stability. An in vitro ECMO circuit was used to study the effects of both “new” and “old” membrane oxygenators on the clearance of dexmedetomidine over the course of 24 hours. Once primed, the circuit was dosed with 840 μg of dexmedetomidine for a final concentration of 0.9 μg/ml. Serial samples, both pre- and post-oxygenator, were taken at 5, 60, 360, and 1440 minutes. Concentrations of the drug were expressed as a percentage of the original concentration remaining at each time point, both for new and old circuits. The new circuits were run at a standard flow for 24 hours, after which time the circuit was considered old and re-dosed with dexmedetomidine and the trial repeated. Results show that dexmedetomidine losses occur early in the circuits and then continue to decline. Initial losses in the first hour were 11+-65% and 59-73% pre- and post-oxygenator in the new circuit and 36-50% and 42-72% in the old circuit. The clearance of the drug through the membrane oxygenator exhibits no statistical difference between pre and post or new and old circuits. Dexmedetomidine can be expected to exhibit concentration changes during ECMO therapy. This effect appears to be more related to adsorption to the polyvinyl chloride (PVC) tubing rather than the membrane oxygenator. Dosage adjustments during dexmedetomidine administration during ECMO therapy may be warranted in order to maintain adequate serum concentrations and, hence, the desired degree of sedation.*(Lack of equilibrium)


2015 ◽  
Vol 39 (9) ◽  
pp. 782-787 ◽  
Author(s):  
Christian Dornia ◽  
Alois Philipp ◽  
Stefan Bauer ◽  
Christian Stroszczynski ◽  
Andreas G. Schreyer ◽  
...  

Perfusion ◽  
2020 ◽  
Vol 35 (1_suppl) ◽  
pp. 29-33 ◽  
Author(s):  
Bishoy Zakhary ◽  
Jayne Sheldrake ◽  
Vincent Pellegrino

While hypercapnia is typically well treated with modern membrane oxygenators, there are cases where respiratory acidosis persists despite maximal extracorporeal membrane oxygenation support. To better understand the physiology of gas exchange within the membrane oxygenator, CO2 clearance within an adult Maquet Quadrox-iD oxygenator was evaluated at varying blood CO2 tensions and V/Q ratios in an ex vivo extracorporeal membrane oxygenation circuit. A closed blood-primed circuit incorporating two Maquet Quadrox-iD oxygenators in series was attached to a Maquet PLS Rotaflow pump. A varying blend of CO2 and air was connected to the first oxygenator to provide different levels of pre-oxygenator blood CO2 levels (PvCO2) to the second oxygenator. Varying sweep gas flows of 100% O2 were connected to the second oxygenator to provide different V/Q ratios. Exhaust CO2 was directly measured, and then VCO2 and oxygenator dead space fraction (VD/VT) were calculated. VCO2 increased with increasing gas flow rates with plateauing at V/Q ratios greater than 4.0. Exhaust CO2 increased with PvCO2 in a linear fashion with the slope of the line decreasing at high V/Q ratios. Oxygenator dead space fraction varied with V/Q ratio—at lower ratios, dead space fraction was 0.3-0.4 and rose to 0.8-0.9 at ratios greater than 4.0. Within the Maquet Quadrox-iD oxygenator, CO2 clearance is limited at high V/Q ratios and correlated with elevated oxygenator dead space fraction. These findings have important implications for patients requiring high levels of extracorporeal membrane oxygenation support.


Perfusion ◽  
2014 ◽  
Vol 30 (3) ◽  
pp. 239-242 ◽  
Author(s):  
A Özyüksel ◽  
C Ersoy ◽  
A Akçevin ◽  
H Türkoğlu ◽  
AE Çiçek ◽  
...  

2011 ◽  
Vol 59 (S 01) ◽  
Author(s):  
A Mühle ◽  
G Färber ◽  
T Doenst ◽  
M Barten ◽  
J Garbade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document