Linkages between atmospheric circulation, climate and streamflow in the northern North Atlantic: research prospects

2006 ◽  
Vol 30 (2) ◽  
pp. 143-174 ◽  
Author(s):  
D. G. Kingston ◽  
D. M. Lawler ◽  
G. R. McGregor

This paper evaluates the relationships between atmospheric circulation, climate and streamflow in the northern North Atlantic region over the last century and especially the last 50 years. Improved understanding of climatic influences on streamflow is vital given the great importance of fluvial processes to natural systems and water resources, especially in the light of recent and predicted climate change. The main focus lies with climatic and hydrologic implications of the major circulation patterns in the northern North Atlantic, namely the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO). The studies reviewed here reveal key relationships between circulation, climate and streamflow across the northern North Atlantic, allowing the construction of a simple conceptual model for this system. Generally positive NAO/AO-streamflow relationships are found in northwest Europe and northeast USA, with both positive and negative NAO/AO-streamflow linkages apparent for parts of eastern Canada. To help promote a better understanding of the system, several research gaps are identified and critically examined, including: the spatial scope and coverage of investigations; data quality and homogeneity; appropriateness of analytical techniques; and the need for greater knowledge and technique sharing between hydrology and climatology, particularly regarding the rigorous characterization of atmospheric circulation patterns. Among these, the development of seasonally varying, or mobile, NAO indices, to capture variations in subseasonal, seasonal and annual movements in the centres of action, and the need to develop analyses of more hydrologically meaningful climate variables beyond conventional time averaged statistics, are deemed particularly important.

2017 ◽  
Author(s):  
Lars Norin ◽  
Abhay Devasthale ◽  
Tristan S. L'Ecuyer

Abstract. For a high latitude country like Sweden snowfall is an important contributor to the regional water cycle. Furthermore, snowfall impacts surface properties, affects atmospheric thermodynamics, has implications for traffic and logistics management, disaster preparedness, and also impacts climate through changes in surface albedo and turbulent heat fluxes. For Sweden it has been shown that large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. Although the link between atmospheric circulation patterns and precipitation has been investigated for rainfall there are no studied focused on the sensitivity of snowfall to weather states over Sweden. In this work we investigate the response of snowfall to eight selected weather states. These weather states consist of four dominant wind directions together with cyclonic and anti-cyclonic circulation patterns and enhanced positive and negative phases of the North Atlantic oscillation. The presented analysis is based on multiple data sources, such as ground-based radar measurements, satellite observations, spatially-interpolated in situ observations, and reanalysis data. The data from these sources converge to underline the sensitivity of falling snow over Sweden to the different weather states. In this paper we examine both average snowfall intensities and snowfall accumulations associated with the different weather states. It is shown that even though the heaviest snowfall intensities occur during conditions with winds from the southwest, the largest contribution to snowfall accumulation arrives from winds from the southeast. Large differences in snowfall due to variations in the North Atlantic oscillation are shown as well as a strong effect of cyclonic and anti-cyclonic circulation patterns. Satellite observations are used to reveal the vertical structures of snowfall during the different weather states.


2017 ◽  
Vol 10 (9) ◽  
pp. 3249-3263 ◽  
Author(s):  
Lars Norin ◽  
Abhay Devasthale ◽  
Tristan S. L'Ecuyer

Abstract. For a high-latitude country like Sweden snowfall is an important contributor to the regional water cycle. Furthermore, snowfall impacts surface properties, affects atmospheric thermodynamics, has implications for traffic and logistics management, disaster preparedness, and also impacts climate through changes in surface albedo and turbulent heat fluxes. For Sweden it has been shown that large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. Although the link between atmospheric circulation patterns and precipitation has been investigated for rainfall there are no studies focused on the sensitivity of snowfall to weather states over Sweden.In this work we investigate the response of snowfall to eight selected weather states. These weather states consist of four dominant wind directions together with cyclonic and anticyclonic circulation patterns and enhanced positive and negative phases of the North Atlantic Oscillation. The presented analysis is based on multiple data sources, such as ground-based radar measurements, satellite observations, spatially interpolated in situ observations, and reanalysis data. The data from these sources converge to underline the sensitivity of falling snow over Sweden to the different weather states.In this paper we examine both average snowfall intensities and snowfall accumulations associated with the different weather states. It is shown that, even though the heaviest snowfall intensities occur during conditions with winds from the south-west, the largest contribution to snowfall accumulation arrives with winds from the south-east. Large differences in snowfall due to variations in the North Atlantic Oscillation are shown as well as a strong effect of cyclonic and anticyclonic circulation patterns. Satellite observations are used to reveal the vertical structures of snowfall during the different weather states.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Pascal Yiou ◽  
Julien Cattiaux ◽  
Aurélien Ribes ◽  
Robert Vautard ◽  
Mathieu Vrac

A few types of extreme climate events in the North Atlantic region, such as heatwaves, cold spells, or high cumulated precipitation, are connected to the recurrence of atmospheric circulation patterns. Understanding those extreme events requires assessing long-term trends of the atmospheric circulation. This paper presents a set of diagnostics of the intra- and interannual recurrence of atmospheric patterns. Those diagnostics are devised to detect trends in the stability of the circulation and the return period of atmospheric patterns. We detect significant emerging trends in the winter circulation, pointing towards a potential increased predictability. No such signal seems to emerge in the summer. We find that the winter trends in the dominating atmospheric patterns and their recurrences do not depend of the patterns themselves.


Geografie ◽  
2017 ◽  
Vol 122 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Dragan D. Milošević ◽  
Stevan M. Savić ◽  
Uglješa Stankov ◽  
Igor Žiberna ◽  
Milana M. Pantelić ◽  
...  

This paper examines temporal and spatial patterns of annual and seasonal maximum temperatures (Tmax) in Slovenia and their relationship with atmospheric circulation patterns. A significant increase in maximum temperature (Tmax; from 0.3°C to 0.5°C·decade-1) was observed throughout the country at the annual scale in the period 1963–2014. Significant positive trends are observed on all stations in summer (from 0.4°C to 0.7°C·decade-1) and spring (from 0.4°C to 0.6°C·decade-1). The results indicate significant correlations between the mean annual maximum temperature (Tmax) and the East Atlantic Oscillation (EA) (from 0.5 to 0.7), the Arctic Oscillation (AO) (from 0.4 to 0.7) and the Scandinavian Oscillation (SCAND) (from −0.3 to −0.4) throughout the country. A significant EA influence is observed in all seasons, while the AO influence is noticed in winter and spring, SCAND in spring and summer, the North Atlantic Oscillation (NAO) and the Mediterranean Oscillation (MO) in winter, the East Atlantic/Western Russia Oscillation (EA/WR) in summer and the El Nino Southern Oscillation (ENSO) in autumn.


2018 ◽  
Vol 31 (10) ◽  
pp. 3849-3863 ◽  
Author(s):  
Javier Mellado-Cano ◽  
David Barriopedro ◽  
Ricardo García-Herrera ◽  
Ricardo M. Trigo ◽  
Mari Carmen Álvarez-Castro

Abstract This paper presents observational evidence of the atmospheric circulation during the Late Maunder Minimum (LMM, 1685–1715) based on daily wind direction observations from ships in the English Channel. Four wind directional indices and 8-point wind roses are derived at monthly scales to characterize the LMM. The results indicate that the LMM was characterized by a pronounced meridional circulation and a marked reduction in the frequency of westerly days all year round, as compared to the present (1981–2010). The winter circulation contributed the most to the cold conditions. Nevertheless, findings indicate that the LMM in Europe was more heterogeneous than previously thought, displaying contrasting spatial patterns in both circulation and temperature, as well as large decadal variability. In particular, there was an increase of northerly winds favoring colder winters in the first half of the LMM, but enhanced southerlies contributing to milder conditions in the second half of the LMM. The analysis of the atmospheric circulation yields a new and complete classification of LMM winters. The temperature inferred from the atmospheric circulation confirms the majority of extremely cold winters well documented in the literature, while uncovering other less documented cold and mild winters. The results also suggest a nonstationarity of the North Atlantic Oscillation (NAO) pattern within the LMM, with extremely cold winters being driven by negative phases of a “high zonal” NAO pattern and “low zonal” NAO patterns dominating during moderately cold winters.


2016 ◽  
Author(s):  
Luca Pozzoli ◽  
Srdan Dobricic ◽  
Simone Russo ◽  
Elisabetta Vignati

Abstract. Winter warming and sea ice retreat observed in the Arctic in the last decades determine changes of large scale atmospheric circulation pattern that may impact as well the transport of black carbon (BC) to the Arctic and its deposition on the sea ice, with possible feedbacks on the regional and global climate forcing. In this study we developed and applied a new statistical algorithm, based on the Maximum Likelihood Estimate approach, to determine how the changes of three large scale weather patterns (the North Atlantic Oscillation, the Scandinavian Blocking, and the El Nino-Southern Oscillation), associated with winter increasing temperatures and sea ice retreat in the Arctic, impact the transport of BC to the Arctic and its deposition. We found that the three atmospheric patterns together determine a decreasing winter deposition trend of BC between 1980 and 2015 in the Eastern Arctic while they increase BC deposition in the Western Arctic. The increasing trend is mainly due to the more frequent occurrences of stable high pressure systems (atmospheric blocking) near Scandinavia favouring the transport in the lower troposphere of BC from Europe and North Atlantic directly into to the Arctic. The North Atlantic Oscillation has a smaller impact on BC deposition in the Arctic, but determines an increasing BC atmospheric load over the entire Arctic Ocean with increasing BC concentrations in the upper troposphere. The El Nino-Southern Oscillation does not influence significantly the transport and deposition of BC to the Arctic. The results show that changes in atmospheric circulation due to polar atmospheric warming and reduced winter sea ice significantly impacted BC transport and deposition. The anthropogenic emission reductions applied in the last decades were, therefore, crucial to counterbalance the most likely trend of increasing BC pollution in the Arctic.


Sign in / Sign up

Export Citation Format

Share Document